Catalog

Chapter 1 General. 1
1.1 Safety Precautions 1
1.2 Pre-use 1
1.3 Technical Specifications. 2
Chapter 2 Installation. 5
Chapter 3 Indicators, Keyboard and Operation Instructions. 10
Chapter 4 Function List 13
4.1 Safety Precautions 13
4.2 Reading Method of the Parameter List. 13
4.3 Function Group. 13
4.4 F00 Group: Environmental Applications 14
4.5 F01 Group: Basic Setting 15
4.6 F02 Group: Parameter Of Motor 1 18
4.7 F03 Group: Vector Control 21
4.8 F04 Group: V/F Control. 25
4.9 F05 Group: Input Terminal 26
4.10 F06 Group: Output Terminal 30
4.11 F07 Group: Running Control 32
4.12 F08 Group: Auxiliary Control 1 35
4.13 F09 Group: Auxiliary Control 2 36
4.14 F10 Group: Protection Parameter 37
4.15 F11 Group: Keyboard Parameter. 42
4.16 F12 Group: Communication Parameter. 45
4.17 F13 Group: PID Control 47
4.18 F14 Group: Multi-Speed and Simple PLC 49
4.19 F15 Group: Reserved 51
4.20 F25 Group: AS/VS Correction 51
4.21 C0x Group: Monitoring Parameter 51
4.22 Input \& Output Terminal Functions Selection. 53
4.23 Fault Code Table. 54
Chapter 5 Regular Inspection and Maintenance 56
5.1 Inspection 56
5.2 Maintenance 56
5.3 Product Guarantee 57
Appendix I: Modbus Communication Protocol 58
Appendix Ii: External Keyboard Size and Model. 60

Chapter 1 General

1．1 Safety Precautions

Please fully understand the safety precautions described in this manual before using to ensure safety of both persons and products．

Warning signs and their meanings

The following marks are used in this manual to indicate that this part is of great safety importance．Failure to follow these precautions may result in personal injury，damage or even death to the product and associated systems．

Λ 危险	DANGER：death or major safety accidents may occur due to wrong operations．
\triangle 注意	Caution：minor injuries may occur due to wrong operations．

Table 1－1

Operating qualification

This product must be operated by trained professionals．In addition，operators must go through professional skills training，familiar with the installation，wiring，operation and maintenance of the equipment，and correctly respond to various emergency situations in use．

Safety rules

Safety rules are put forward for your safety and are measures taken to prevent injury to operators and damage to the product and associated systems；Read this manual carefully before use and strictly follow the safety rules and warning signs in this manual．
－Correct transportation，storage，installation，as well as careful operation and maintenance，is very important for the safe operation of the frequency inverter．During transportation and storage，the inverter must be protected from shock and shake．It must also be stored in places which are dry and free from non－corrosive gas，non－conductive dust and where ambient temperature is lower than $60^{\circ} \mathrm{C}$ ．
－This product has dangerous voltage，and it is controlled by a potentially dangerous movement mechanism．Any operations against the regulations or the requirements of this manual may lead to personal injury or damage of the product and related system．
－Do not wire when power is on otherwise there is a risk of death by electric shock；When connecting cables，checking，or maintaining cables， power off all related devices and ensure that the DC voltage of the main loop is reduced to a safe level．Wait five minutes before performing related operations．
－Power cables，motor cables and control cables must be connected tight and all of the ground terminals must be grounded，and the grounding resistance is less than 10Ω ．
－The static electricity of human body will seriously damage the internal sensitive devices．Before performing related operations，please follow the instructions specified in ESD prevention measures（ESD），otherwise the frequency inverter may be damaged．
－Output voltage of the inverter is a kind of pulse waveform，if the output side is equipped with capacitors or lightning protection varistor devices to improve the power factor，be sure to remove or refit the input side of the inverter．
－Switch devices such as circuit breakers and contactors shall not be added on the output side of the inverter（if the switch device must be connected on the output side，the output current of the inverter must be zero when the switch is operated in the control）．
－No matter where the fault occurs in the control equipment，it may cause production suspension and major accidents．Therefore，take necessary external protection measures or backup devices．
－Please use this product only for the purposes prescribed by the manufacturer，usage for special occasions of emergency and rescue like marine， medical，aviation and nuclear facilities without permission are seriously forbidden．
－Maintenance of this product can only carry out by Veichi or professionals who have been licensed by Veichi，unauthorized modification or use of accessories without Veichi＇s authorization may lead to product failure．Any defective components must be replaced in time for product maintenance．

1．2 Pre－use

Upon receipt of your ordered products，please check whether the outer package is damaged，open the outer package after confirming that it is intact，and confirm whether the frequency inverter is damaged，scratched or contaminated（Damage caused during transportation does not fall within the scope of Veichi＇s＂three guarantees＂）．If you receive a product with transportation damage，please contact the company or transportation company immediately．After confirming that the received product is intact，please confirm again whether you received what you have ordered．

Figure 1-1

Voltage	$\mathbf{2 2 0 V}$	$\mathbf{3 8 0 V}$
Power(kW)	Rated output current(A)	
0.4	3.0	-
0.75	4.0	2.5
1.5	7.0	3.7
2.2	10.0	5.0
4	-	9.5
5.5	-	13.0
7.5		17.0

Table 1-2

1.3 Technical Specifications

Item		Specification
$\begin{aligned} & \text { 言 } \\ & \text { B } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Voltage \& Frequency	S2: single-phase $200 \mathrm{~V} \sim 240 \mathrm{~V} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$; T3: Three-phase $380 \mathrm{~V} \sim 480 \mathrm{~V} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$.
	Allowable fluctuation	T/S2: $-10 \% \sim 10 \%$; T3: $-15 \% \sim 10 \%$; Voltage unbalance rate: $<3 \%$; Frequency: $\pm 5 \%$; distortion rate conforming to IEC61800-2
	Closing striking current	Lower than rated current
$\begin{aligned} & \text { 言 } \\ & 0 \\ & \hline \end{aligned}$	Output voltage	Rated output: 3 phase, $0 \mathrm{~V} \sim$ input voltage, error lower than 5\%
	Output frequency range	$0 \mathrm{~Hz} \sim 600 \mathrm{~Hz}$
	Output frequency accuracy	$\pm 0.5 \%$ of the maximum frequency value
	Overload capacity	T3 model: 150% of rated current for $89 \mathrm{~s}, 180 \%$ of rated current for 10 seconds, 200% rated current for 3 s S2 model: 150% of rated current for 24 seconds, 180% of rated current for 3.4 seconds
	Motor control mode	No PG V/F control, no PG vector control
	Modulation mode	Optimized space vector PWM modulation
	Motor type	Three-phase asynchronous motor \& permanent magnet synchronous motor supported
	Carrier frequency	$2.0 \mathrm{kHz} \sim 12.0 \mathrm{kHz}$
	Speed control range	No PG vector control, rated load 1:100;
	Steady-state speed accuracy	No PG vector control: $\leqslant 2 \%$ of rated synchronous speed;
	Starting torque	No PG vector control: 150% of rated torque at 0.5 Hz ;
	Torque ripple	No PG vector control: $\leqslant 0.1 \%$ of rated torque
	Torque response	No PG vector control: < 20 ms ;

	Frequency accuracy	Digital setting: maximum frequency $x \pm 0.01 \%$; Simulation setting: maximum frequency $x \pm 0.2 \%$
	Frequency resolution	Digital setting: 0.01 Hz ; Simulation setting: maximum frequency $\times 0.05 \%$
	Torque control	Torque setting calculation, torque mode speed limit
	DC braking capability	Starting frequency: $0.00 \mathrm{~Hz} \sim 50.00 \mathrm{~Hz}$; Braking time: $0.0 \mathrm{~s} \sim 60.0 \mathrm{~s}$; Braking current: $0.0 \% \sim 150.0 \%$ of rated current
	Torque boost	Automatic torque increased by $0.0 \% \sim 100.0 \%$; Manual torque increased by $0.0 \% \sim 30.0 \%$
	V/F curve	Four methods: linear torque characteristic curve, self-setting V/F curve, reduced torque characteristic curve (power 1.1 ~2.0), square V/F curve
	Acceleration \& Deceleration curves	Two methods: linear acceleration and deceleration, S-curve acceleration and deceleration Four settings of acceleration and deceleration time, time unit $0.01 \mathrm{~s}, 65000$ s max.
	Rated output voltage	Power supply voltage compensation enables setting within the range of $50 \% \sim 100 \%$ (the output cannot exceed the input voltage) when rated motor voltage is 100%.
	Automatic voltage regulation	The output voltage can be kept constant automatically during grid voltage fluctuation.
	Automatic energysaving operation	The V/F control mode automatically optimizes the output voltage according to the load to realize energy saving.
	Automatic current limiting	Automatic current limit during operation to prevent frequent overcurrent failure trip
	Instantaneous power failure treatment	Uninterrupted running during instantaneous power failure through the bus voltage control
	Standard functions	PID control, speed tracking and power-off restart, jump frequency, frequency upper and minimum control, program operation, multi-speed, RS485 communication port, analog output, parameter access level setting, common parameter setting, monitoring parameter comparator output, counting and timing, and swing frequency
	Frequency setting channel	Analog voltage/current terminals AS (VS), communication and multi-channel terminals setting, combination of primary and secondary channels, and external keyboard settings can be switched in various ways
	Command running channel	Communication setting via upper computer Terminal setting via the X terminal The number entering via the external keyboard
	Input command signal	Start, stop, positive and negative rotation, point, multi-speed, free stop, reset, acceleration and deceleration time selection, frequency and channel setting and external fault alarm
	External output signal	1-way relay output, 1-way collector open output
	Protections	Overvoltage, undervoltage, current limiting, overcurrent, overload, electronic thermal relay, overheat, overvoltage stall, data protection, rapid protection, input and output phase loss protection
	Parameter copy	Function code information of the inverter can be uploaded and downloaded to realize fast parameter replication (only external keyboard)
	Condition monitoring	1. External keyboard input all parameters of monitoring parameter group including output frequency, given frequency, output current, input voltage, output voltage, motor speed, PID feedback, PID setting, module temperature, given torque and output torque. 2. The relevant status of the inverter can be indicated through the three LED lights on the product. POWER indicates the power and it's red when power is normal. RUN indicates running status and it's green when running is normal. FAULT indicates warning or fault and it's red when something is abnormal.
	Fault warning	Overvoltage, undervoltage, overcurrent, short circuit, phase loss, overload, overheating, overvoltage stall, current limiting, data protection, current fault conditions and historical faults
	Installation site	If the altitude is lower than 1000 meters, derate 1% for each elevation of 100 meters; No condensation, icing, rain, snow, hail, etc., solar radiation lower than $700 \mathrm{~W} / \mathrm{m} 2$, air pressure between $70 \mathrm{kPa} \sim$ 106 kPa
䔍	 Humidity	$-20^{\circ} \mathrm{C} \sim+50^{\circ} \mathrm{C}$, derate 5% for each increase of $1^{\circ} \mathrm{C}$ when it's above $40^{\circ} \mathrm{C}, 50^{\circ} \mathrm{C}$ max (no-load running) $\leq 95 \% \mathrm{RH}\left(20^{\circ} \mathrm{C}\right.$; relative humidity change rate shall not exceed 5% per hour, and no condensation)
気	Vibration	$5.9 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{G})$ when during $9 \mathrm{~Hz} \sim 200 \mathrm{~Hz}$
	Storage temperature	$-30^{\circ} \mathrm{C} \sim+60^{\circ} \mathrm{C}$
	Installation method	wall-mounted
	Protection level	IP20

$\left.$| Polution level | Level 2 |
| :--- | :--- |
| | Cooling method | | Natural cooling for models with V1 cases |
| :--- |
| Forced air cooling for models with V2 and V3 cases | \right\rvert\,

Table 1-3

Chapter 2 Installation

Please use the product in strict accordance with the requirements of the environment, wiring, and ventilation described in this chapter.
in order to ensure safety of the users and best performance of the inverter.

- Dimensions of the inverter and keyboard

Figure 2-1 Installation dimensions of V1 model

Model	Boundary dimension (mm)			Mounting dimension (mm)				Mounting aperture(mm)
	W	H	D	A	B	W1	H1	
AC01-S2-R40G-B	65	150	130	5	5.5	54	139.5	Ф5.2
AC01-S2-R75G-B								
AC01-T3-R75G-B								
AC01-T3-1R5G-B								

Table 2-2 Installation dimensions of V1 model

Figure 2-2 Installation dimensions of V2 model

| Model | Boundary dimension (mm) | | | | Mounting dimension (mm) | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Mounting

aperture(

mm)\end{array}\right]\)

- Standard connection diagram

Note:

1. Select the appropriate brake resistance according to the field conditions and Brake Resistance Specifications;
2. Multifunctional input terminals (X1 ~X3) can be used as input for NPN transistor signals;
3. The digital and analog grounding terminals are combined into the COM terminal in the control circuit;

Figure 2-3 Standard connection diagram

- Auxiliary terminals and output capacity

Terminal	Function	Maximum output
+10 V	a loop formed with a 10V auxiliary analog power	
output and COM		

Table 2-3 Auxiliary terminals and output capacity

- Main loop terminal

Symbol	Designation	Function
R/L	main loop input terminal	T3: three-phase power input R phase S2: single-phase power input L line
S		T3: three-phase power input S phase S2: reserved
T/N		T3: three-phase power input T phase S2: single-phase power input N wire
U	main loop output terminal	U-phase output
V		V-phase output
W		W-phase output
+	DC bus power terminal +	Used on external brake resistance to realize quick stop
PB	brake resistance terminal	
$\underline{\underline{-}}$	ground terminal	Used to ground the inverter

Table 2-4 Main loop terminal

- RJ45 interface pin definition

Figure 2-4 RJ45 interface

It's the top view above and the specific network interpretations are as follows:

Pin label	Pin definition	Description
1	COM	5 V power supply ground terminal
2	NC	Reserved
3	COM	5 V power supply ground terminal
4	5 V	5 V power
5	5 V	5 V power
6	LOAD	software programming to select pin
7	$\mathrm{~B}-$	RS485 communication B-, shared with terminal B-
8	$\mathrm{~A}+$	RS485 communication A+, shared with terminal A+

Table 2-5 Network interpretations

- Recommended brake resistance specifications

The braking resistance and resistance power in the following table are verified by ordinary inertia load and intermittent braking mode. If it needs to be used in the occasion of large inertia and frequent braking for a long time, please adjust the braking resistance and resistance power appropriately according to the specifications of the selected inverter and the rated parameters of the braking unit. If you have any questions, please consult the service hotline of technical service department of Suzhou Veichi Electric Technology Co., LTD.

Three-phase 380V					
Model	Motor power (kW)	Brake unit	Recommended resistance (on 100\% braking torque and $\mathbf{1 0 \%}$ braking rate)		Minimum resistance (Ω)
			Resistance model	Resistors qty.	
AC01-T3-R75G-B	0.75 kW	Built-in, standard	$750 \Omega 150 \mathrm{~W}$	1	100Ω
AC01-T3-1R5G-B	1.5 kW	Built-in, standard	$400 \Omega 300 \mathrm{~W}$	1	100Ω
AC01-T3-2R2G-B	2.2 kW	Built-in, standard	$250 \Omega 400 \mathrm{~W}$	1	100Ω
AC01-T3-004G-B	4.0 kW	Built-in, standard	$150 \Omega 500 \mathrm{~W}$	1	40Ω
AC01-T3-5R5G-B	5.5 kW	Built-in, standard	$100 \Omega 600 \mathrm{~W}$	1	40Ω
AC01-T3-7R5G-B	7.5 kW	Built-in, standard	$75 \Omega 780 \mathrm{~W}$	1	40Ω
Single-phase 220V					
Model	Motor power (kW)	Brake unit	Recommended resistance(on 100\% braking torque and 10%braking rate)		Minimum resistance (Ω)
			Resistance model	Resistors qty.	
AC01-S2-R40G-B	0.4 kW	Built-in, standard	$400 \Omega 100 \mathrm{~W}$	1	50Ω
AC01-S2-R75G-B	0.75 kW	Built-in, standard	$200 \Omega 120 \mathrm{~W}$	1	50Ω
AC01-S2-1R5G-B	1.5 kW	Built-in, standard	$100 \Omega 300 \mathrm{~W}$	1	50Ω
AC01-S2-2R2G-B	2.2 kW	Built-in, standard	$75.0 \Omega 300 \mathrm{~W}$	1	20Ω
AC01-S2-004G-B	4 kW	Built-in, standard	$50.0 \Omega 500 \mathrm{~W}$	1	20Ω

Table 2-6 Recommended brake resistance specifications

Chapter 3 Indicators, Keyboard and Operation Instructions

- Indicators

Figure 3-1 AC01 series main interface

States of AC01 Series inverters can be told via the three indicating lights on its interface:

Symbol	Indicator	Status	Description
POWER	RED	on	Power on, and ready for operation
		off	Abnormal power supply
RUN	GREEN	on	The inverter runs in positive rotation
		Flash $(500 \mathrm{~ms}$ on and then 500 ms off, and cycle starts again)	Inverter runs in reverse
		off	Inverter is not running
FAULT	RED	on	Faults of main codes 1~11 occur
		Flash (100 ms on and then 100 ms off, and cycle starts again)	Faults of main codes 12~117 occur
		Flash slowly $(100 \mathrm{~ms}$ on and then 100 ms off +100 ms on and then 1700 ms off, , and cycle starts again)	warning
		off	fault-free

Table 3-1 Indicators

Note: Refer to PAGE 54 of this manual for main FAULT/WARNING codes 1~163.

- Keyboard layout

Note: The current version of AC01 series inverter does not have its own keyboard, and KBD300-25 or KBD10-15 keyboard can be extended via RJ45 network port.

Figure 3-2 KBD300-25 dual-line display keyboard

- External keyboard functions

Symbol	Dual-line display keyboard	Functions
A	Unit indicator	Hz: Frequency; A: current; V: voltage; V/A: voltage or current; RPM: speed; \%: percentage.
B	Status indicator	On: forward running; flash: reverse running; Off: shutdown.
C	Menu PRG	Enter the menu interface when standby or running. Press the key to exit the modification after parameters are modified and long press the key for 1 second to directly enter the status interface.
F	Run RUN	When run/stop is controlled by the keyboard, press the key to make inverter rotate forward. The status indicator is on for forward rotating and flashing for reverse rotating.
	Stop/Reset (7) STOP	When the command is given via keyboard, press the key to stop the inverter. F11.03[keyboard stop key setting] can be used to define whether other command channels are valid or not; Press the key to reset the inverter in the fault state.
G	ok	Digital potentiometer: press the up key to increase the operating value for clockwise rotation and press down key to reduce the operating value for counterclockwise rotation.
		Confirm key: Press this key to confirm after modifying the value
		Move left or right
H	Multifunction key JOGiREV	Select the function of the key via F11.02[multi-function key selection via keyboard]

Table 3-2 External keyboard meanings

- Meaning of external keyboard indicators

Designation		Status	Meaning
External keyboard unit indicator	Hz	flash/on	frequency unit
	A	on	current unit
	V	on	voltage unit
	RPM	on	speed unit
	$\%$	flash/on	Pertage unit

Table 3-3 Meaning of external keyboard indicators

- Basic parameter group setting

Take F0.122 [acceleration time] setting as an example to illustrate the basic operations of the external LED keyboard.

Figure 3-3 Setting steps

Note: The keyboard shift key on the external keyboard can be used to quickly select the tens, hundreds and thousands of parameter values.

- Operation monitoring status checking

Figure 3-4 Checking steps
Note: When using the external keyboard, use the left shift key to cycle switch the first row of monitoring parameters, and use the right shift key to cycle switch the second row of monitoring parameters.

- Monitoring parameters checking

Take C02.05[PLC operation phase] parameter checking as an example to explain the basic operation of the external LED keyboard.

Figure 3-5 Checking steps

Chapter 4 Function List

This section only provides a brief list of functions. For details please refer to the technical manual of AC01 series inverter or consult relevant staff of Veichi.

4.1 Safety Precautions

| Note all the information about safety in this book. Danger |
| :--- | :--- |
| Please note that failure to follow these warnings may result in serious injury or even death. We shall not be liable for any personal injury or |
| equipment damage resulting from failure to comply with this maunnal by users. |

Table 4-1 Safety precautions

4.2 Reading Method of the Parameter List

- Icons and terms under control mode

Mark	Meaning	Mark	Meaning
V/F	Valid parameters in V/F control mode	RUN	Changeable parameters during running
SVC	Valid parameters in open-loop vector control mode	STOP	Unchangeable parameters during running
		READ	Read-only parameters, unchangeable

Table 4-2 Icons and terms

4.3 Function Group

Note
Setting parameter [F11.30] to choose RS485 or foreign keyboard and this parameter will not be reset with [F00.03] parameter. It is strongly
recommended that the user disconnects the hardware of the other channel when using one of them.

Table 4- 3 Note

- Parameters of the Inverter

Parameter	Designation	Parameter	
F00.0x	Environment settings	F07.0x	Start
F00.1x	Common parameter setting	F07.1x	Stop
F01.0x	Basic command	F07.2x	DC braking \& speed tracking
F01.1x	Frequency command	F07.3x	Jog
F01.2x-F01.3x	Acceleration \& deceleration time	F07.4x	Start/stop frequency keeping\& frequency jump
F01.4x	PWM control	F08.0x	Counting and timing
F02.0x	Motor basic parameters \& self-learning setting	F08.1x	Reserved
F02.1x	Advanced parameters of asynchronous motor	F08.2x	Reserved
F02.2x	Advanced parameters of synchronous motor	F08.3x	Swing frequency control
F02.3x-F02.4x	Reserved	F10.0x	Current protection
F02.5x	Motor application parameters	F10.1x	Voltage protection
F03.0x	Speed ring	F10.2x	Auxiliary protection
F03.1x	Current loop and torque limit	F10.3x	Load protection
F03.2x	Torque optimization	F10.4x	Stall protection
F03.3x	Magnetic flow optimization	F10.5x	Fault recovery \& motor overload protection

F03.4x-F03.5x	Torque control	F11.0x	keys operation
F04.0x	V/F control	F11.1x	Cyclic state monitoring
F04.1x	User-defined V/F curve	F11.2x	Monitoring parameter control
F04.2x	Reserved	F11.3x	Keyboard special characteristics
F04.3x	V/F energy saving control	F12.0x	Modbus slave parameters
F05.0x	Digital input terminal	F12.1x	Modbus master parameters
F05.1x	Delay X1-X3 detection	F13.00-F13.06	PID setting and feedback
F05.2x	Digital input terminal operation selection	F13.07-F13.24	PID adjustment
F05.3x	Reserved	F13.25-F13.28	PID feedback of disconnection
F05.4x	Analog type processing	F13.29-F13.33	Sleep mode
F05.5x	Analog linear processing	F14.00-F14.14	Multi- speed frequency setting
F05.6x	AS/VS curve-1 processing	F14.15	PLC operation mode selection
F05.7x	AS/VS curve 2 processing	F14.16-F14.30	PLC operation time selection
F05.8x	AS/VS as digital input terminal	F14.31-F14.45	PLC direction \& acceleration/deceleration time selection F06.0x Reserved
F06.1x	Reserved	F16 group	Reserved
F06.2x-F06.3x	Digital \& relay output	C00.xx	Basic monitoring
F06.4x	Frequency detection	C01.xx	Fault monitoring
F06.5x	Monitoring parameter comparator output	C03.xx	Reserved
F06.6x-F06.7x	Virtual input and output terminals		

Table 4-4 Parameters of the inverter

4.4 F00 Group: Environmental Applications

F00.0x group: environment setting

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute
		V/F SVC Set parameter access level according to parameter access limits F00.00 $(0 x 0000)$	Parameter access level $0:$ standard parameters (Fxx.yy, Cxx.yy) $1:$ common parameters (F00.00, Pxx.yy) 2: monitered parameters (F00.00, Cxx.yy) 3: changed pa (F00.00, Hxx.yy)	

F00.08 $(0 x 0008)$	Free parameter 2	V/F SVC machine number when using multiple machines; mode number for purposes when using multiple machines	0 $(0-65535)$	RUN

Table 4-5 F00.0x group
F00.10~F00.39 group: common parameters setting

Parameter code	Designation	Content	Factory default (setting range)	Adjustable attribute
		V/F SVC		
F00.1~	Common	LED ones \& tens-place: set "yy" between $00 \sim 99$ among	Generic default	
F00.39	parameter	the parameter code Fxx.yy	parameters	RUN
$(0 x 000 A \sim$	addresses	$00 \sim 99$	$(0000 \sim 2999)$	
$0 \times 0027)$	setting	LED hundreds \& thousands-place: set "xx" between 00~		

Table 4-6 F00.10~F00.39 group

4.5 F01 Group: Basic Setting

F01.0x group: basic setting

Parameter code (Address)	Designation	Content		Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F01.00 } \\ (0 \times 0100) \end{gathered}$	Motor 1 control mode	V/F SVC Controlling method of the motor 0:AM-V/F: V/F control mode 1:AM-SVC: open loop vector control, current closed loop control PM: 10:PM-V/F: V/F control 11:PM-SVC:open loop vector control, current closed loop control		$\begin{gathered} 0 \\ (0 \sim 11) \end{gathered}$	STOP
$\begin{gathered} \text { F01.01 } \\ (0 \times 0101) \end{gathered}$	Command running channel	V/F SVC The channel set for the inverter to receive command of operation, stop and direction. 0 : keyboard control (external keyboard preferred) 1: terminal control 2: RS485 communication control 3: reserved		$\begin{gathered} 1 \\ (0 \sim 3) \end{gathered}$	RUN
$\begin{gathered} \text { F01.02 } \\ (0 \times 0102) \end{gathered}$	Source channel A of set frequency	V/F SVC Setting frequency source channel for the inverter: 0 : via keyboard number entering 1: via keyboard analog potentiometer 2: via current analog AS 3: via voltage analog VS 4: reserved	5: reserved 6: via RS485 communication port 7: via UP/DW terminal 8: via PID control 9: via program control (PLC) 10: reserved 11: via multi-speed setting	$\begin{gathered} 2 \\ (0 \sim 11) \end{gathered}$	RUN
$\begin{gathered} \text { F01.03 } \\ (0 \times 0103) \end{gathered}$	Gain of frequency source channel A	V/F SVC Gain of the frequency source channel A		$\begin{gathered} 100.0 \\ (0.0 \% \sim 500 . \\ 0 \%) \end{gathered}$	STOP
$\begin{gathered} \text { F01.04 } \\ (0 \times 0104) \end{gathered}$	Source channel B of set frequency	V/F SVC Source channel of frequency setting for the inverter, the same as [F01.02]		$\begin{gathered} 0 \\ (0 \sim 11) \end{gathered}$	RUN
$\begin{gathered} \text { F01.05 } \\ (0 \times 0105) \end{gathered}$	Gain of frequency source channel B	V/F SVC Gain of the frequency source channel B		$\begin{gathered} 100.0 \\ (0.0 \% \sim 500 . \\ 0 \%) \end{gathered}$	STOP

$\begin{gathered} \text { F01.06 } \\ (0 \times 0106) \end{gathered}$	Reference frequency source for channel B	V/F SVC Change this parameter to select reference source for frequency setting channel B 0 : refer to the maximum output frequency 1: refer to the frequency of channel A		$\begin{gathered} 0 \\ (0 \sim 1) \end{gathered}$	RUN
$\begin{gathered} \text { F01.07 } \\ (0 \times 0107) \end{gathered}$	Selection of frequency source channel	V/F SVC Used for setting combination method B for the inverter. 0: channel A 1: channel B 2: channel A + channel B 3: channel A- channel B 4: the higher frequency between chan : the lower frequency between chann	frequency channel A and A and channel B and channel B	$\begin{gathered} 0 \\ (0 \sim 5) \end{gathered}$	RUN
$\begin{gathered} \text { F01.08 } \\ (0 \times 0108) \end{gathered}$	Command of running bundled frequencies	V/F SVC When this parameter is valid, it is used to set the source channel for each command running channel of bundled frequencies Ones-place: bundled command from keyboard Tens-place: bundled command from terminals Hundreds-place: bundled command from communication port Thousands-place: reserved 0 :no bundling 1: via keyboard number entering 2: via keyboard analog potentiometer	3: via current analog AS 4: via voltage analog VS 5: reserved 6: reserved 7: via RS485 communication port 8: via UP/DW terminal 9: via PID control A: via program control (PLC) B: reserved C: via multi-speed setting D: reserved	$\begin{gathered} 0 x 0000 \\ (0 x 0000 \sim 0 x \\ \text { DDDD) } \end{gathered}$	RUN
$\begin{gathered} \text { F01.09 } \\ (0 \times 0109) \end{gathered}$	Frequency setting via keyboard numbers	V/F SVC Used to set and modify the frequency numbers	via input keyboard	$\begin{gathered} \hline 50.00 \mathrm{~Hz} \\ (0.00 \mathrm{~Hz} \\ \text { upper limit } \\ \text { frequency }) \\ \hline \end{gathered}$	RUN

Table 4-7 F01.0x group

F01.1x group: command about frequency

Parameter code (Address)	Designation	Content		Factory default (setting range)	Adjustable attribute
F01.10 (0x010A)	Maximum frequency	V/F SVC The maximum frequency can be set for the inverter.	50.00Hz (upper limit frequency $\sim 00.00 \mathrm{~Hz})$	STOP	

F01.14 $(0 \times 010 \mathrm{E})$	Resolution of frequency command	V/F SVC Set the resolution of the frequency command. $0: 0.01 \mathrm{~Hz} ; 1: 0.1 \mathrm{~Hz} ; 2: 0.1 \mathrm{rpm} ; 3: 1 \mathrm{rpm} ; 4: 10 \mathrm{rpm}$	0 $(0-4)$	STOP

Table 4-8 F01.1x group

F01.2x~F01.3x group: acceleration \& deceleration time

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute
$\begin{aligned} & \text { F01.20 } \\ & (0 \times 0114) \end{aligned}$	Acceleration \& deceleration time benchmark frequency	V/F SVC Set benchmark frequency to calculate acceleration \& deceleration time 0 : Maximum frequency; 1 : fixed frequency of $50 \mathrm{~Hz} ; 2$: set frequency	$\begin{gathered} 0 \\ (0-2) \end{gathered}$	STOP
$\begin{aligned} & \text { F01.21 } \\ & (0 \times 0115) \end{aligned}$	Acceleration time unit	V/F SVC The unit of the set acceleration time $0: 1 \mathrm{~s} ; \quad 1: 0.1 \mathrm{~s} ; \quad 2: 0.00 \mathrm{~s}$	$\begin{gathered} 2 \\ (0-2) \end{gathered}$	STOP
$\begin{gathered} \text { F01.22 } \\ (0 \times 0116) \end{gathered}$	Acceleration time 1	V/F SVC Time required to accelerate the output frequency from 0.00 Hz to the benchmark frequency $\begin{aligned} & 1 \mathrm{~s} \sim 65000 \mathrm{~s}(\mathrm{~F} 01.21=0) ; \quad 0.1 \mathrm{~s} \sim 6500.0 \mathrm{~s}(\mathrm{~F} 01.21=1) ; \\ & 0.01 \mathrm{~s} \sim 650.00 \mathrm{~s}(\mathrm{~F} 01.21=2) \end{aligned}$	$\begin{gathered} \text { Model } \\ \text { setting(0.01s-650. } \\ 00 \mathrm{~s}) \end{gathered}$	RUN
$\begin{aligned} & \text { F01.23 } \\ & (0 \times 0117) \end{aligned}$	Deceleration time 1	V/F SVC Time required for the output frequency to decelerate from benchmark frequency to 0.00 Hz	Model setting $(0.01 \mathrm{~s} \sim 650$. $00 \mathrm{~s})$	RUN
$\begin{gathered} \text { F01.24 } \\ (0 \times 0118) \end{gathered}$	Acceleration time 2	V/F SVC Time required to accelerate the output frequency from 0.00 Hz to the benchmark frequency	$\begin{gathered} \text { Model } \\ \text { setting }(0.01 \mathrm{~s} \sim 650 . \\ 00 \mathrm{~s}) \\ \hline \end{gathered}$	RUN
$\begin{gathered} \text { F01.25 } \\ (0 \times 0119) \end{gathered}$	Deceleration time 2	V/F SVC Time required for the output frequency to decelerate from benchmark frequency to 0.00 Hz	Model setting $(0.01 \mathrm{~s} \sim 650$. $00 \mathrm{~s})$	RUN
$\begin{aligned} & \text { F01.26 } \\ & (0 \times 011 \mathrm{~A}) \end{aligned}$	Acceleration time 3	V/F SVC Time required to accelerate the output frequency from 0.00 Hz to the benchmark frequency	$\begin{gathered} \text { Model } \\ \text { setting }(0.01 \mathrm{~s} \sim 650 . \\ 00 \mathrm{~s}) \end{gathered}$	RUN
$\begin{aligned} & \text { F01.27 } \\ & (0 \times 011 \mathrm{~B}) \end{aligned}$	Deceleration time 3	V/F SVC Time required for the output frequency to decelerate from benchmark frequency to 0.00 Hz	$\begin{gathered} \text { Model } \\ \text { setting }(0.01 \mathrm{~s}-650 . \\ 00 \mathrm{~s}) \\ \hline \end{gathered}$	RUN
$\begin{gathered} \text { F01.28 } \\ (0 \times 011 \mathrm{C}) \end{gathered}$	Acceleration time 4	V/F SVC Time required to accelerate the output frequency from 0.00 Hz to the benchmark frequency	Model setting(0.01s~650. $00 \mathrm{~s})$	RUN
$\begin{aligned} & \text { F01.29 } \\ & \text { (0x011D) } \end{aligned}$	Deceleration time 4	V/F SVC Time required for the output frequency to decelerate from benchmark frequency to 0.00 Hz	$\begin{gathered} \text { Model } \\ \text { setting }(0.01 \mathrm{~s} \sim 650 . \\ 00 \mathrm{~s}) \\ \hline \end{gathered}$	RUN
$\begin{aligned} & \text { F01.30 } \\ & (0 \times 011 \mathrm{E}) \end{aligned}$	S-curve acceleration \& deceleration selection	V/F SVC Whether the S-curve acceleration \& deceleration selection is valid 0:invalid; 1:valid; 2:flexible S-curve	$\begin{gathered} 1 \\ (0 \sim 2) \end{gathered}$	STOP
$\begin{gathered} \text { F01.31 } \\ (0 \times 011 \mathrm{~F}) \end{gathered}$	S-curve acceleration start time	V/F SVC Set start time of acceleration for S-curve	$\begin{gathered} 0.20 \mathrm{~s} \\ (0.00 \mathrm{~s} \sim 10.00 \mathrm{~s}) \\ \hline \end{gathered}$	STOP
$\begin{gathered} \text { F01.32 } \\ (0 \times 0120) \\ \hline \end{gathered}$	S-curve acceleration end time	V/F SVC Set end time of acceleration for S-curve	$\begin{gathered} 0.20 \mathrm{~s} \\ (0.00 \mathrm{~s} \sim 10.00 \mathrm{~s}) \\ \hline \end{gathered}$	STOP
$\begin{gathered} \text { F01.33 } \\ (0 \times 0121) \end{gathered}$	S-curve deceleration start time	V/F SVC Set start time of deceleration for S-curve	$\begin{gathered} 0.20 \mathrm{~s} \\ (0.00 \mathrm{~s} \sim 10.00 \mathrm{~s}) \\ \hline \end{gathered}$	STOP
$\begin{gathered} \text { F01.34 } \\ (0 \times 0122) \end{gathered}$	S-curve deceleration end time	V/F SVC Set end time of deceleration for S-curve	$\begin{gathered} 0.20 \mathrm{~s} \\ (0.00 \mathrm{~s} \sim 10.00 \mathrm{~s}) \end{gathered}$	STOP

			0.00 Hz	
F01.35	Switch frequency	V/F SVC	$(0.00 \mathrm{~Hz} \sim$	RUN
$(0 x 0123)$	between acceleration	Set frequency switch between acceleration time $1 \& 2$	Upper limit time $1 \& 2$	

Table 4-9 F01.2x~F01.3x group

F01.4x group: PWM control

Parameter code	Designation	Content		Factory default (setting range)	Adjustable attribute
$\begin{aligned} & \text { F01.40 } \\ & (0 \times 0128) \end{aligned}$	Carrier frequency	V/F SVC Used to set the switching frequency of inverter IGBT.		$\begin{gathered} \hline \text { Model setting } \\ (2.0 \mathrm{kHz} \sim 12.0 \\ \mathrm{kHz}) \\ \hline \end{gathered}$	RUN
$\begin{gathered} \text { F01.41 } \\ (0 \times 0129) \end{gathered}$	PWM control mode	V/F SVC LED ones-place: relationship between carrier and temperature 0: irrelevant 1: relevant LED tens-place: relationship between carrier and output frequency 0 : irrelevant 1: relevant	LED hundreds-place: random PWM enable 0 : forbidden 1: valid under V / F mode 2: valid under vector mode LED thousands-palce: PWM modulation mode 0 : three-phase only 1: automatic switching between two-phase \&three-phase	$\begin{gathered} 1111 \\ (0000 \sim 1211) \end{gathered}$	RUN
$\begin{gathered} \text { F01.43 } \\ (0 \times 012 \mathrm{~B}) \end{gathered}$	Compensated gain of dead zone	V/F SVC Compensated gain of dead zo		$\begin{gathered} 306 \\ (0 \sim 512) \end{gathered}$	RUN
$\begin{gathered} \text { F01.46 } \\ (0 \times 012 \mathrm{E}) \end{gathered}$	PWM random depth	V/F SVC When the PWM random dep is set, the larger the carrier flu	is effective, the larger it uation will be.	$\begin{gathered} 0 \\ (0 \sim 20) \end{gathered}$	RUN

Table 4-10 F01.4x group

4.6 F02 Group: Parameter of Motor 1

F02.0x group: basic parameters and self-learning type selection of the motor

Parameter code	Designation	Content	Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F02.00 } \\ (0 \times 0200) \end{gathered}$	Motor type	V/F SVC Set the type of motor. 0: Asynchronous motor (AM) 1: Synchronous motor (PM)	$\begin{gathered} 0 \\ (0 \sim 1) \end{gathered}$	READ
$\begin{gathered} \text { F02.01 } \\ (0 \times 0201) \end{gathered}$	Pole number	V/F SVC Set the motor pole number.	$\begin{gathered} 4 \\ (2 \sim 98) \end{gathered}$	STOP
$\begin{gathered} \hline \text { F02.02 } \\ (0 \times 0202) \\ \hline \end{gathered}$	Rated power	V/F SVC Set the rated power of motor	$\begin{gathered} \text { Model setting } \\ (0.1 \mathrm{~kW} \sim 22.0 \mathrm{~kW}) \end{gathered}$	STOP
$\begin{gathered} \text { F02.03 } \\ (0 \times 0203) \end{gathered}$	Rated frequency	V/F SVC Set the rated frequency of motor	Model setting $(0.01 \mathrm{~Hz} \sim$ maximum frequency)	STOP
$\begin{gathered} \text { F02.04 } \\ (0 \times 0204) \end{gathered}$	Rated speed	V/F SVC Set the rated speed of motor	Model setting ($0 \mathrm{rpm} \sim 65000 \mathrm{rpm}$)	STOP
$\begin{gathered} \text { F02.05 } \\ (0 \mathrm{x} 0205) \end{gathered}$	Rated voltage	V/F SVC Set the rated voltage of motor	Model setting ($0 \mathrm{~V} \sim 2000 \mathrm{~V}$)	STOP

$\begin{gathered} \text { F02.06 } \\ (0 \times 0206) \end{gathered}$	Rated current	V/F SVC Set the rated current of motor	$\begin{gathered} \text { Model setting } \\ (0.1 \mathrm{~A} \sim 3000.0 \mathrm{~A}) \end{gathered}$	STOP
$\begin{gathered} \text { F02.07 } \\ (0 \times 0207) \end{gathered}$	Parameters selflearning selection	V/F SVC [F02.07] will automatically be set to " 0 " after the parameter self-tuning is finished. 0 : no operation 1: rotational self-learning 2: static self-learning 3: stator resistance self-learning	$\begin{gathered} 0 \\ (0 \sim 3) \end{gathered}$	STOP

Table 4-11 F02.0x group
Note: When $\mathbf{F 0 2 . 0 0}$ [motor type] is a synchronous motor, $\mathbf{F 2 . 0 4}$ [motor rated speed] is calculated from F2.01 [motor pole number] and F2.03
[motor rated frequency], please set the corresponding parameters correctly. The calculation formula is: $\mathbf{F 2 . 0 4}$ [rated speed of motor] =
60* F2.03 [rated frequency of motor] / (F2.01[number of poles of motor] / 2)

F02.1x group: advanced parameters of asynchronous motor

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F02.10 } \\ (0 \times 020 \mathrm{~A}) \end{gathered}$	No-load current	V/F SVC Set no-load current of asynchronous motor	Model setting $(0.1 \mathrm{~A} \sim 3000.0 \mathrm{~A})$	STOP
$\begin{aligned} & \text { F02.11 } \\ & (0 \times 020 \mathrm{~B}) \end{aligned}$	Stator resistance	V/F SVC Set stator resistance of asynchronous motor	Model setting $(0.01 \mathrm{~m} \Omega \sim$ $60000.00 \mathrm{~m} \Omega$)	STOP
$\begin{gathered} \text { F02.12 } \\ (0 \times 020 \mathrm{C}) \end{gathered}$	Rotor resistance	V/F SVC Set rotor resistance of asynchronous motor	Model setting $(0.01 \mathrm{~m} \Omega \sim$ $60000.00 \mathrm{~m} \Omega$)	STOP
$\begin{gathered} \text { F02.13 } \\ (0 \times 020 \mathrm{D}) \end{gathered}$	Stator leakage inductance	V/F SVC Set stator leakage inductance of asynchronous motor	Model setting ($0.01 \mathrm{mH} \sim$ 65535.00 mH)	STOP
$\begin{gathered} \text { F02.14 } \\ (0 \times 020 \mathrm{E}) \end{gathered}$	Stator inductance	V/F SVC Set stator inductance of asynchronous motor	Model setting $(0.01 \mathrm{mH} \sim$ 65535.00 mH)	STOP
$\begin{gathered} \text { F02.15 } \\ (0 \times 020 \mathrm{~F}) \\ \hline \end{gathered}$	Stator resistance perunit value	V/F SVC Set stator resistance per-unit value	$\begin{gathered} \text { Model setting } \\ (0.01 \% \sim 50.00 \%) \\ \hline \end{gathered}$	READ
$\begin{gathered} \text { F02.16 } \\ (0 \times 0210) \end{gathered}$	Rotor resistance perunit value	V/F SVC Set rotor resistance per-unit value	$\begin{gathered} \text { Model setting } \\ (0.01 \% \sim 50.00 \%) \end{gathered}$	READ
$\begin{gathered} \text { F02.17 } \\ (0 \times 0211) \end{gathered}$	Stator leakage inductance per-unit value	V/F SVC Set stator leakage inductance per-unit value	$\begin{gathered} \text { Model setting } \\ (0.01 \% \sim 50.00 \%) \end{gathered}$	READ
$\begin{gathered} \text { F02.18 } \\ (0 \times 0212) \end{gathered}$	Stator inductance per-unit value	V/F SVC Set stator inductance per-unit value	$\begin{gathered} \text { Model setting } \\ (0.1 \% \sim 999.0 \%) \end{gathered}$	READ
$\begin{gathered} \text { F02.19 } \\ (0 \times 0213) \end{gathered}$	F02.11~F02.14 decimal point selection	V/F SVC Set the decimal point of the four parameters from F02.11 to F02.14. This parameter is read-only.	$\begin{gathered} 0 \times 0000 \\ (0 \times 0000 \sim 0 \times 2222) \end{gathered}$	READ

Table 4-12 F02.1x group
F02.2x group: advanced parameters of synchronous motor

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F02.20 } \\ (0 \times 0214) \end{gathered}$	Stator resistance	V/F SVC Set stator resistance of synchronous motor.	$\begin{gathered} \text { Model setting } \\ (0.01 \mathrm{~m} \Omega \sim 60000.00 \mathrm{~m} \Omega) \end{gathered}$	STOP
$\begin{gathered} \text { F02.21 } \\ (0 \times 0215) \end{gathered}$	D-axis inductance	V/F SVC Set d-axis inductance of synchronous motor.	Model setting ($0.001 \mathrm{mH} \sim 6553.500 \mathrm{mH}$)	STOP
$\begin{gathered} \text { F02.22 } \\ (0 \times 0216) \end{gathered}$	Q-axis inductance	V/F SVC Set q-axis inductance of synchronous motor.	Model setting $(0.001 \mathrm{mH} \sim 6553.500 \mathrm{mH})$	STOP
$\begin{gathered} \text { F02.23 } \\ (0 \times 0217) \end{gathered}$	Counter electromotive force	V/F SVC Set counter electromotive force of synchronous motor. Only recognized during rotation self-tuning.	Model setting $(0 \mathrm{~V} \sim 500 \mathrm{~V})$	STOP
$\begin{gathered} \text { F02.24 } \\ (0 \times 0218) \end{gathered}$	Encoder mounting angle	V/F SVC Set encoder mounting angle of synchronous motor	$\begin{gathered} \text { Model setting } \\ \left(0.0^{\circ} \sim 360.0^{\circ}\right) \end{gathered}$	RUN
$\begin{gathered} \text { F02.25 } \\ (0 \times 0219) \end{gathered}$	Stator resistance per-unit value	V/F SVC Set stator resistance per-unit value of synchronous motor	Model setting (monitored value)	READ
$\begin{gathered} \text { F02.26 } \\ (0 \times 021 \mathrm{~A}) \end{gathered}$	D-axis inductance per-unit value	V/F SVC Set d-axis inductance per-unit value of synchronous motor	Model setting (monitored value)	READ
$\begin{gathered} \text { F02.27 } \\ (0 \times 021 \mathrm{~B}) \end{gathered}$	Q-axis inductance per-unit value	V/F SVC Set q -axis inductance per-unit value of synchronous motor	Model setting (monitored value)	READ
$\begin{gathered} \text { F02.28 } \\ (0 \times 021 \mathrm{C}) \end{gathered}$	Pulse width coefficient	V/F SVC Set pulse width coefficient of synchronous motor	Model setting (00.00~99.99)	STOP
$\begin{gathered} \text { F02.29 } \\ (0 \times 021 \mathrm{D}) \end{gathered}$	F02.20-F02.22 decimal point selection	V/F SVC Set the decimal point of the three parameters from F02.20 to F02.22. This parameter is readonly.	$\begin{gathered} 0 \times 0000 \\ (0 \times 0000 \sim 0 \times 2222) \end{gathered}$	READ

Table 4-13 F02.2x group

F02.3x $\sim 02.4 x$ group: reserved

F02.5x~F02.6x group: motor application parameters

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute
F02.50 $(0 x 0232)$	Stator resistor learning selection	V/F SVC $0:$ invalid; 1: only learn without update; value greater than 1: learn and update;	0 $(0 \sim 3)$	STOP
F02.51 $(0 x 0233)$	Stator resistance learning starting factor 1	V/F SVC Set stator resistance learning starting factor 1.	0 $(0 \sim 1000)$	RUN
F02.52 $(0 x 0234)$	Stator resistance learning starting factor 2	V/F SVC Set stator resistance learning starting factor 2.	0 $(-20.00 \% \sim$ $20.00 \%)$	RUN
F02.53	Stator resistance learning starting factor 3	V/F SVC		
Set stator resistance learning starting factor 3.	0	$(0 \sim 65535)$	RUN	

$\begin{gathered} \text { F02.60 } \\ (0 \times 023 \mathrm{C}) \end{gathered}$	Magnetic pole search of synchronous motor	V/F SVC Ones-place: reserved Tens-place: open loop vector 0 : off; 1: on; 2: on but only the first power-on start The hundreds-place: V/F 0 : off; 1 : on; 2 : on, but only the first power-on start	$\begin{gathered} 0010 \\ (0000 \sim 3223) \end{gathered}$	STOP
$\begin{gathered} \text { F02.61 } \\ (0 \times 023 \mathrm{D}) \end{gathered}$	Current for magnetic pole search	V/F SVC Set the current value of magnetic pole search	$\begin{gathered} 0.0 \% \\ (0.0 \% \sim 6553.5 \%) \end{gathered}$	STOP

Table 4-14 F02.5x ~ F02.6x group

4.7 F03 Group: Vector Control

F03.0x group: speed ring

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F03.00 } \\ (0 \times 0300) \end{gathered}$	ASR speed stiffness level	SVC Set speed stiffness level. The higher the level, the better the speed stiffness.	$\begin{gathered} 32 \\ (1 \sim 128) \end{gathered}$	RUN
$\begin{gathered} \text { F03.01 } \\ (0 \times 0301) \end{gathered}$	ASR speed stiffness mode	SVC Set ASR speed stiffness mode.	$\begin{gathered} 0 \times 0000 \\ (0 \times 0000 \sim 0 \times 1111) \end{gathered}$	RUN
$\begin{gathered} \text { F03.02 } \\ (0 \mathrm{x} 0302) \end{gathered}$	ASR (speed ring) proportional gain 1	SVC Set ASR (speed ring) proportional gain 1	$\begin{gathered} 10.00 \\ (0.01 \sim 100.00) \end{gathered}$	RUN
$\begin{gathered} \text { F03.03 } \\ (0 \times 0303) \\ \hline \end{gathered}$	ASR (speed ring) integral time 1	SVC Set ASR (speed ring) integral time 1	$\begin{gathered} \hline 0.100 \mathrm{~s} \\ (0.000 \mathrm{~s} \sim 6.000 \mathrm{~s}) \end{gathered}$	RUN
$\begin{gathered} \text { F03.04 } \\ (0 \times 0304) \end{gathered}$	ASR filter time 1	SVC Set ASR filter time 1.	$\begin{gathered} 0.0 \mathrm{~ms} \\ (0.0 \mathrm{~ms} \sim 100.0 \\ \mathrm{ms}) \\ \hline \end{gathered}$	RUN
$\begin{gathered} \text { F03.05 } \\ (0 \mathrm{x} 0305) \end{gathered}$	ASR switching frequency 1	SVC Set ASR switching frequency 1.	$\begin{gathered} \hline 0.00 \mathrm{~Hz} \\ (0.00 \mathrm{~Hz} \sim \\ \text { max frequency }) \\ \hline \end{gathered}$	RUN
$\begin{gathered} \text { F03.06 } \\ (0 \times 0306) \end{gathered}$	ASR (speed ring) proportional gain 2	SVC Set ASR (speed ring) proportional gain 2.	$\begin{gathered} 10.00 \\ (0.01 \sim 100.00) \end{gathered}$	RUN
$\begin{gathered} \text { F03.07 } \\ (0 \mathrm{x} 0307) \end{gathered}$	ASR (speed ring) integral time 2	SVC Set ASR (speed ring) integral time 2.	$\begin{gathered} 0.100 \mathrm{~s} \\ (0.000 \mathrm{~s} \sim 6.000 \mathrm{~s}) \end{gathered}$	RUN
$\begin{gathered} \text { F03.08 } \\ (0 \times 0308) \\ \hline \end{gathered}$	ASR filter time 2	SVC Set ASR filter time 2.	$\begin{gathered} 0.0 \mathrm{~ms} \\ (0.0 \mathrm{~ms} \sim 100.0 \mathrm{~ms}) \end{gathered}$	RUN
$\begin{gathered} \text { F03.09 } \\ (0 \mathrm{x} 0309) \end{gathered}$	ASR switching frequency 2	SVC Set ASR switching frequency 2.	$\begin{gathered} 0.00 \mathrm{~Hz} \\ (0.00 \mathrm{~Hz} \sim \\ \text { max frequency }) \\ \hline \hline \end{gathered}$	RUN

Table 4-15 F03.0x group

F03.1x group: current loop \& torque limit

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute
F03.10 $(0 x 030 A)$	D-axis proportional gain	SVC Set d-axis proportional gain of current loop	1.000 $(0.001 \sim 4.000)$	RUN
F03.11 $(0 x 030 B)$	D-axis integral gain	SVC Set d-axis integral gain of current loop	1.000 $(0.001 \sim 4.000)$	RUN
F03.12	Q-axis proportional	SVC	1.000	RUN

(0x030C)	gain	Set q-axis proportional gain of current loop	(0.001~4.000)	
$\begin{gathered} \text { F03.13 } \\ (0 \times 030 \mathrm{D}) \\ \hline \end{gathered}$	Q-axis integral gain	SVC Set q-axis integral gain of current loop	$\begin{gathered} 1.000 \\ (0.001 \sim 4.000) \\ \hline \end{gathered}$	RUN
$\begin{gathered} \hline \text { F03.15 } \\ (0 \times 030 \mathrm{~F}) \end{gathered}$	Torque limit of motoring	SVC Set torque limit of motoring	$\begin{gathered} 250.0 \% \\ (0.0 \% \sim 400.0 \%) \\ \hline \end{gathered}$	RUN
$\begin{gathered} \hline \text { F03.16 } \\ (0 \times 0310) \end{gathered}$	Torque limit of power generation	SVC Set torque limit of power generation	$\begin{gathered} \hline 250.0 \% \\ (0.0 \% \sim 400.0 \%) \\ \hline \end{gathered}$	RUN
$\begin{gathered} \hline \text { F03.17 } \\ (0 \times 0311) \\ \hline \end{gathered}$	Regenerative torque limit at low speed	SVC Set regenerative torque limit at low speed	$\begin{gathered} \hline 0.0 \% \\ (0.0 \% \sim 400.0 \%) \\ \hline \end{gathered}$	RUN
$\begin{gathered} \text { F03.18 } \\ (0 \times 0312) \end{gathered}$	Amplitudefrequency of torque limit at low speed	SVC Set amplitude \& frequency of torque limit at low speed	$\begin{gathered} 6.00 \mathrm{~Hz} \\ (0.00 \mathrm{~Hz} \sim 30.00 \mathrm{~Hz}) \end{gathered}$	RUN
$\begin{gathered} \text { F03.19 } \\ (0 \times 0313) \end{gathered}$	Torque limit selection	SVC Ones-place: torque limit channel of motoring decided 0 : via keyboard number entering; 1: via keyboard potentiometer, 2: via AS setting; 3: via VS setting 4: reserved; \quad 5: reserved; 6: via RS485 communication port (0×3014) 7: reserved; Tens-place: torque limit channel of power generation decided 0 : via keyboard number entering; 1: via keyboard potentiometer, 2: via AS setting; 3: via VS setting 4: reserved; 5: reserved; 6: via RS485 communication port (0x3014); 7: reserved; Hundreds-place $0: C 00.06$ displays torque limit of motoring 1:C00.06 displays torque limit of power generation Thousands-place: reserved	$\begin{gathered} 0 \times 0000 \\ \text { (0x0000~0x0177) } \end{gathered}$	RUN

Table 4-16 F03.1x group
F03.2x group: torque optimization

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F03.20 } \\ (0 \times 0314) \end{gathered}$	LF sourcing current of synchronous motor	SVC When the open-loop control of PM motor is valid, and the greater sourcing current, the greater the torque output.	$\begin{gathered} 20.0 \% \\ (0.0 \% \sim 50.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F03.21 } \\ (0 \mathrm{x} 0315) \end{gathered}$	HF sourcing current of synchronous motor	SVC When the open-loop control of PM motor is valid, and the greater sourcing current, the greater the torque output.	$\begin{gathered} 10.0 \% \\ (0.0 \% \sim 50.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F03.22 } \\ (0 \times 0316) \end{gathered}$	Sourcing current frequency of synchronous motor	SVC 100.0% of the set sourcing current frequency corresponds to F01.10[Upper limit frequency].	$\begin{gathered} 10.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	RUN
$\begin{gathered} \mathrm{F} 03.23 \\ (0 \mathrm{x} 0317) \end{gathered}$	Slip compensation of asynchronous motor	SVC Set slip compensation of asynchronous motor.	$\begin{gathered} 100.0 \% \\ (0.0 \% \sim 250.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F03.24 } \\ (0 \mathrm{x} 0318) \end{gathered}$	Initial Starting torque	SVC Set initial starting torque.	$\begin{gathered} 0.0 \% \\ (0.0 \% \sim 250.0 \%) \end{gathered}$	RUN

F03.3x group: magnetic flow optimization

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F03.30 } \\ (0 \times 031 \mathrm{E}) \end{gathered}$	Feedforward coefficient of weak magnetism	SVC Set feedforward coefficient of weak magnetism.	$\begin{gathered} 10.0 \% \\ (0.0 \% \sim 500.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F03.31 } \\ (0 \times 031 \mathrm{~F}) \end{gathered}$	Magnetic weakening control gain	SVC Set magnetic weakening control gain	$\begin{gathered} 10.0 \% \\ (0.0 \% \sim 500.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F03.32 } \\ (0 \times 0320) \end{gathered}$	Upper limit magnetic weakening current	SVC Set upper limit magnetic weakening current.	$\begin{gathered} 60.0 \% \\ (0.0 \% \sim 250.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F03.33 } \\ (0 \mathrm{x} 0321) \end{gathered}$	Magnetic weakening voltage coefficient	SVC Set magnetic weakening voltage coefficient	$\begin{gathered} 90.0 \% \\ (0.0 \% \sim 120.0 \%) \end{gathered}$	RUN
$\begin{gathered} \hline \text { F03.34 } \\ \text { (0x0322) } \\ \hline \end{gathered}$	Output power limit	SVC Set output power limit.	$\begin{gathered} \hline 250.0 \% \\ (0.0 \% \sim 400.0 \%) \\ \hline \end{gathered}$	RUN
$\begin{gathered} \text { F03.35 } \\ (0 \mathrm{x} 0323) \end{gathered}$	Over-excitation braking gain	SVC Set over-excitation braking gain	$\begin{gathered} 100.0 \% \\ (0.0 \% \sim 500.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F03.36 } \\ (0 \mathrm{x} 0324) \end{gathered}$	Over-excitation brake clipping	SVC Set over-excitation brake clipping	$\begin{gathered} 100.0 \% \\ (0.0 \% \sim 250.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F03.37 } \\ (0 \times 0325) \end{gathered}$	Energy-saving running	$\begin{aligned} & \hline \text { SVC } \\ & \text { 0: off; } \\ & \text { 1: on } \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ (0 \sim 1) \end{gathered}$	RUN
$\begin{gathered} \text { F03.38 } \\ (0 \mathrm{x} 0326) \end{gathered}$	Lower limit excitation of energysaving running	SVC Set lower limit excitation of energy-saving running	$\begin{gathered} 50.0 \% \\ (0.0 \% \sim 80.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F03.39 } \\ (0 \times 0327) \end{gathered}$	Filter coefficient of energy-saving running	SVC Set filter coefficient of energy-saving running	$\begin{gathered} 0.010 \mathrm{~s} \\ (0.000 \mathrm{~s}-6.000 \mathrm{~s}) \end{gathered}$	RUN

Table 4-18 F03.3x group

F03.4x F03.5x group: torque control

Paramete r code (Address)	Designation	Content		Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F03.40 } \\ (0 \mathrm{x} 0328) \end{gathered}$	Torque control selection	SVC 0 : speed control mode to limit torque 1: torque control mode to limit speed		$\begin{gathered} 0 \\ (0 \sim 1) \end{gathered}$	RUN
$\begin{gathered} \text { F03.41 } \\ (0 \times 0329) \end{gathered}$	Torque command setting	SVC Ones-place: channel A: 0 : torque setting via keyboard number entering 1: via keyboard potentiometer; 2: via AS 3: via VS 4: reserved 5: reserved 6: via RS485 communication port 7: reserved 8: reserved 9: reserved	Tens-place: channel B: Setting methods the same with channel A Hundreds-place: combinatio ns: 0: A channel 1: B channel 2: $\mathrm{A}+\mathrm{B}$ 3: A-B 4:MIN(A, B)	$\begin{gathered} 0000 \\ (0000 \sim 0599) \end{gathered}$	RUN
$\begin{gathered} \hline \text { F03.42 } \\ (0 x 032 \mathrm{~A}) \\ \hline \end{gathered}$	Torque setting via keyboard number	SVC Set torque via keyboard numbe	tering.	$\begin{gathered} \hline 0.0 \% \\ (0.0 \% \sim 100.0 \%) \\ \hline \hline \end{gathered}$	RUN

	entering			
$\begin{gathered} \text { F03.43 } \\ (0 \times 032 \mathrm{~B}) \end{gathered}$	Lower limit torque input	SVC Set the lower limit value of torque input.	$\begin{gathered} 0.00 \% \\ (0.00 \% \sim 100.00 \%) \\ \hline \end{gathered}$	RUN
$\begin{gathered} \text { F03.44 } \\ (0 \times 032 \mathrm{C}) \\ \hline \end{gathered}$	Corresponding Lower limit value	SVC Set corresponding Lower limit value.	$\begin{gathered} 0.00 \% \\ (-250.00 \% \sim 300.00 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F03.45 } \\ (0 \times 032 \mathrm{D}) \\ \hline \end{gathered}$	Upper limit torque input	SVC Set upper limit torque input.	$\begin{gathered} 100.00 \% \\ (0.00 \% \sim 100.00 \%) \\ \hline \end{gathered}$	RUN
$\begin{gathered} \mathrm{F} 03.46 \\ (0 \mathrm{x} 032 \mathrm{E}) \end{gathered}$	Corresponding upper limit value	SVC Set corresponding upper limit value.	$\begin{gathered} 100.00 \% \\ (-250.00 \% \sim 300.00 \%) \end{gathered}$	RUN
$\begin{gathered} \mathrm{F} 03.47 \\ (0 \times 032 \mathrm{~F}) \end{gathered}$	Filter time of torque	SVC Set filter time of torque.	$\begin{gathered} 0.100 \mathrm{~s} \\ (0.000 \mathrm{~s}-6.000 \mathrm{~s}) \end{gathered}$	RUN
$\begin{gathered} \text { F03.52 } \\ (0 \times 0334) \end{gathered}$	Upper limit torque command	SVC Set upper limit output torque.	$\begin{gathered} 150.0 \% \\ (0.0 \% \sim 300.0 \%) \\ \hline \end{gathered}$	RUN
$\begin{gathered} \text { F03.53 } \\ (0 \times 0335) \\ \hline \end{gathered}$	Lower limit torque command	SVC Set lower limit output torque.	$\begin{gathered} 0.0 \% \\ (0.0 \% \sim 300.0 \%) \\ \hline \end{gathered}$	RUN
$\begin{gathered} \text { F03.54 } \\ (0 \times 0336) \end{gathered}$	Torque controlling forward speed limit selection	SVC 0: set via code F03.56; 1: value from external keyboard potentiometer \times F03.56; 2:AS \times F03.56; $3: \mathrm{VS} \times$ F03.56; 4: reserved; 5:reserved; 6: value from RS485 communication port \times F 03.56 ; 7:reserved; 8: reserved;	$\begin{gathered} 0 \\ (0 \sim 8) \end{gathered}$	RUN
$\begin{gathered} \text { F03.55 } \\ (0 \times 0337) \end{gathered}$	Torque controlling reverse speed limit selection	```SVC 0: set via code F03.57;; 1: value from external keyboard potentiometer } F03.57; 2:AS }\times\mathrm{ F03.57; 3:VS }\times\mathrm{ F03.57; 4: reserved; 5: reserved; 6: value from RS485 communication port }\times\mathrm{ F03.57; 7: reserved; 8: reserved;```	$\begin{gathered} 0 \\ (0 \sim 8) \end{gathered}$	RUN
$\begin{aligned} & \text { F03.56 } \\ & (0 \times 0338) \end{aligned}$	Torque controlling maximum forward speed	SVC Set torque controlling maximum forward speed	$\begin{gathered} 100.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F03.57 } \\ (0 \times 0339) \end{gathered}$	Torque controlling maximum reverse speed	SVC Set torque controlling maximum reverse speed	$\begin{gathered} 100.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F03.58 } \\ (0 \mathrm{x} 033 \mathrm{~A}) \end{gathered}$	Torque gain switching frequency	SVC Set torque gain switching frequency.	$\begin{gathered} 1.00 \mathrm{~Hz} \\ (0.00 \mathrm{~Hz} \sim 50.00 \mathrm{~Hz}) \end{gathered}$	RUN
$\begin{gathered} \text { F03.59 } \\ (0 \mathrm{x} 033 \mathrm{~B}) \\ \hline \hline \end{gathered}$	Torque gain	SVC Set torque gain	$\begin{gathered} 100.0 \% \\ (0.0 \% \sim 500.0 \%) \end{gathered}$	RUN

Table 4-19 F03.4x~F03.5x group

4．8 F04 Group：V／F Control

F04．0x group：V／F control

Parameter code （Address）	Designation	Content	Factory default （setting range）	Adjustable attribute
$\begin{gathered} \text { F04.00 } \\ (0 \times 0400) \end{gathered}$	Linear V／F curve selection	V／F Used to select the type of V / F curve to meet the requirements of different load characteristics． 0 ：straight V / F curve； 1－9：V／F curves to the powers of 1.1 to 1.9 ； 10：V／F curve squared； 11：self－defined V / F curve；	$\begin{gathered} 0 \\ (0 \sim 11) \end{gathered}$	STOP
$\begin{gathered} \text { F04.01 } \\ (0 \times 0401) \end{gathered}$	Torque boost	V／F 0.0% ：automatic torque boost $0.1 \% \sim 30.0 \%$ ：manual torque boost	$\begin{gathered} \text { 机型确定 } \\ (0.0 \% \sim 30.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F04.02 } \\ (0 \times 0402) \end{gathered}$	Torque boost cut－off frequency	V／F Set the effective range of the torque boost so when the output frequency exceeds this value，the torque boost will be cut off．	$\begin{gathered} 100.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F04.03 } \\ (0 \times 0403) \end{gathered}$	Slip compensation gain	V／F Set slip compensation gain	$\begin{gathered} 0.0 \% \\ (0.0 \% \sim 200.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F04.04 } \\ (0 \times 0404) \end{gathered}$	Slip compensation limit	V／F Set slip compensation limit	$\begin{gathered} 100.0 \% \\ (0.0 \%-300.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F04.05 } \\ (0 \times 0405) \end{gathered}$	Slip compensation filter time	V／F The slip compensation function requires correct input of parameters on the motor nameplate to start parameter learning and then deliver the best performance．	$\begin{gathered} 0.200 \mathrm{~s} \\ (0.000 \mathrm{~s}-6.000 \mathrm{~s}) \end{gathered}$	RUN
$\begin{gathered} \text { F04.06 } \\ (0 \times 0406) \end{gathered}$	Oscillation suppression gain	V／F By adjusting this value，the low frequency resonance can be suppressed，but if it＇s too large， additional stability problems will further occur．	$\begin{gathered} 100.0 \% \\ (0.0 \%-900.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F04.07 } \\ (0 \times 0407) \end{gathered}$	Oscillation suppression filter time	V／F Set oscillation suppression filter time	$\begin{gathered} 1.0 \mathrm{~s} \\ (0.0 \mathrm{~s} \sim 100.0 \mathrm{~s}) \end{gathered}$	RUN
$\begin{gathered} \text { F04.08 } \\ (0 \times 0408) \end{gathered}$	Output voltage percentage	V／F Set output voltage percentage	$\begin{gathered} 100.0 \% \\ (25.0 \% \sim 120.0 \%) \end{gathered}$	STOP

Table 4－20 F04．0x group
F04．1x group：self－defined V／F curve

Parameter code （Address）	Designation	Content	Factory default （setting range）	Adjustable attribute
$\begin{gathered} \hline \text { F04.10 } \\ (0 \times 040 \mathrm{~A}) \end{gathered}$	Self－set voltage V1	V／F Set the value of self－set voltage V1	$\begin{gathered} 3.0 \% \\ (0.0 \% \sim 100.0 \%) \\ \hline \end{gathered}$	STOP
$\begin{aligned} & \text { F04.11 } \\ & (0 \times 040 \mathrm{~B}) \end{aligned}$	Self－set frequency F1	V／F Set the value of self－set frequency F1	1.00 Hz $(0.00 \mathrm{~Hz} \sim$ maximum frequency $)$	STOP
$\begin{gathered} \hline \text { F04.12 } \\ (0 \times 040 \mathrm{C}) \\ \hline \end{gathered}$	Self－set voltage V2	V／F Set the value of self－set voltage V 2	$\begin{gathered} 28.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	STOP
$\begin{gathered} \text { F04.13 } \\ (0 \times 040 \mathrm{D}) \end{gathered}$	Self－set frequency F2	V／F Set the value of self－set frequency F2	$\begin{gathered} 10.00 \mathrm{~Hz} \\ (0.00 \mathrm{~Hz} \sim \\ \text { maximum frequency) } \end{gathered}$	STOP
$\begin{gathered} \text { F04.14 } \\ (0 \times 040 \mathrm{E}) \end{gathered}$	Self－set voltage V3	V／F Set the value of self－set voltage V3	$\begin{aligned} & \hline 55.0 \% \\ & (0.0 \% \sim \\ & 100.0 \%) \\ & \hline \hline \end{aligned}$	STOP

$\begin{gathered} \text { F04.15 } \\ (0 \times 040 \mathrm{~F}) \end{gathered}$	Self-set frequency F3	V/F Set the value of self-set frequency F3	25.00 Hz $(0.00 \mathrm{~Hz} \sim$ maximum frequency)	STOP
$\begin{gathered} \text { F04.16 } \\ (0 \times 0410) \end{gathered}$	Self-set voltage V4	V/F Set the value of self-set voltage V4	$\begin{gathered} 78.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	STOP
$\begin{gathered} \text { F04.17 } \\ (0 \times 0411) \end{gathered}$	Self-set frequency F4	V/F Set the value of self-set frequency F4	$\begin{gathered} \hline 37.50 \mathrm{~Hz} \\ (0.00 \mathrm{~Hz} \\ \text { maximum frequency) } \\ \hline \end{gathered}$	STOP
$\begin{gathered} \hline \text { F04.18 } \\ (0 \times 0412) \end{gathered}$	Self-set voltage V5	V/F Set the value of self-set voltage V5	$\begin{gathered} 100.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	STOP
$\begin{gathered} \text { F04.19 } \\ (0 \times 0413) \end{gathered}$	Self-set frequency F5	V/F Set the value of self-set frequency F5	$\begin{gathered} 50.00 \mathrm{~Hz} \\ (0.00 \mathrm{~Hz} \sim \\ \text { maximum frequency }) \\ \hline \hline \end{gathered}$	STOP

Table 4-21 F04.1x group

F04.2x group: reserved

F04.3x group: V/F energy-saving control

Parameter code	Designation	Content	Factory default (setting range)	Adjustable attribute
$\begin{aligned} & \text { F04.30 } \\ & (0 \times 041 \mathrm{E}) \end{aligned}$	Automatic energy saving control	$\begin{aligned} & \text { V/F } \\ & 0: \text { off } \\ & 1: \text { on } \end{aligned}$	$\begin{gathered} 0 \\ (0 \sim 1) \end{gathered}$	STOP
$\begin{gathered} \mathrm{F} 04.31 \\ (0 \mathrm{x} 041 \mathrm{~F}) \end{gathered}$	Lower limit stepdown frequency	V/F Set lower limit step-down frequency of energy-saving	$\begin{gathered} 15.0 \mathrm{~Hz} \\ (0.0 \mathrm{~Hz} \sim 50.0 \mathrm{~Hz}) \end{gathered}$	STOP
$\begin{gathered} \text { F04.32 } \\ (0 \times 0420) \end{gathered}$	Lower limit stepdown voltage	V/F Set lower limit step-down voltage of energy-saving	$\begin{gathered} 50.0 \% \\ (20.0 \% \sim 100.0 \%) \end{gathered}$	STOP
$\begin{gathered} \text { F04.33 } \\ (0 \times 0421) \end{gathered}$	Regulation rate of step-down voltage	V/F Set regulation rate of step-down voltage of energy-saving	$\begin{gathered} 0.010 \mathrm{~V} / \mathrm{ms} \\ (0.000 \mathrm{~V} / \mathrm{ms} \sim 0.200 \mathrm{~V} / \mathrm{ms}) \end{gathered}$	RUN
$\begin{gathered} \text { F04.34 } \\ (0 \times 0422) \end{gathered}$	Recovery rate of step-down voltage	V/F Set recovery rate of step-down voltage of energy-saving	$\begin{gathered} \hline 0.200 \mathrm{~V} / \mathrm{ms} \\ (0.000 \mathrm{~V} / \mathrm{ms} \sim \\ 2.000 \mathrm{~V} / \mathrm{ms}) \\ \hline \hline \end{gathered}$	RUN

Table 4-22 F04.3x group

4.9 F05 Group: Input Terminal

F05.0x group: setting terminal function via number entering

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute
F05.00 $(0 x 0500)$	Terminal X1 function selection	V/F SVC See the functions of terminal X for details		
F05.01	Terminal X2 (0×0501)	V/F SVC Sunction selection	1 $(0 \sim 95)$	STOP
F05.02 $(0 x 0502)$	Terminal X3 function selection	V/F SVC See the functions of terminal X for details	2	STOP

Table 4-23 F05.0x group

F05.1x group:X1~X3 delay detection

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F05.10 } \\ (0 \times 050 \mathrm{~A}) \end{gathered}$	X1 detected effective delay	V/F SVC The delay time of transition of terminal X1 from the invalid state to the valid state	$\begin{gathered} 0.010 \mathrm{~s} \\ (0.000 \mathrm{~s} \sim 6.000 \mathrm{~s}) \end{gathered}$	RUN
$\begin{aligned} & \text { F05.11 } \\ & (0 \times 050 \mathrm{~B}) \end{aligned}$	X 1 detected ineffective delay	V/F SVC The delay time of the transition of terminal X1 from a valid state to an invalid state	$\begin{gathered} 0.010 \mathrm{~s} \\ (0.000 \mathrm{~s} \sim 6.000 \mathrm{~s}) \end{gathered}$	RUN
$\begin{gathered} \text { F05.12 } \\ (0 \times 050 \mathrm{C}) \end{gathered}$	X2 detected effective delay	V/F SVC The delay time of transition of terminal X2 from the invalid state to the valid state	$\begin{gathered} 0.010 \mathrm{~s} \\ (0.000 \mathrm{~s} \sim 6.000 \mathrm{~s}) \end{gathered}$	RUN
$\begin{gathered} \text { F05.13 } \\ (0 \times 050 \mathrm{D}) \end{gathered}$	X 2 detected ineffective delay	V/F SVC The delay time of the transition of terminal X2 from a valid state to an invalid state	$\begin{gathered} 0.010 \mathrm{~s} \\ (0.000 \mathrm{~s}-6.000 \mathrm{~s}) \end{gathered}$	RUN
$\begin{gathered} \text { F05.14 } \\ (0 \times 050 \mathrm{E}) \end{gathered}$	X3 detected effective delay	V/F SVC The delay time of transition of terminal X1 from the invalid state to the valid state	$\begin{gathered} 0.010 \mathrm{~s} \\ (0.000 \mathrm{~s} \sim 6.000 \mathrm{~s}) \end{gathered}$	RUN
$\begin{gathered} \text { F05.15 } \\ (0 \mathrm{x} 050 \mathrm{~F}) \end{gathered}$	X 3 detected ineffective delay	V/F SVC The delay time of the transition of terminal X3from a valid state to an invalid state	$\begin{gathered} 0.010 \mathrm{~s} \\ (0.000 \mathrm{~s}-6.000 \mathrm{~s}) \end{gathered}$	RUN

Table 4-24 F05.1x group
F05.2x group: Terminal action selection via number entering

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F05.20 } \\ (0 \times 0514) \end{gathered}$	Terminal controlling running mode	V/F SVC 0 : two-wire system 1 1: two-wire system 2 2: three-wire system 1 3: three-wire system 2	$\begin{gathered} 0 \\ (0 \sim 3) \end{gathered}$	STOP
$\begin{gathered} \text { F05.22 } \\ (0 \mathrm{x} 0516) \end{gathered}$	$\mathrm{X} 1 \sim \mathrm{X} 3$ terminal characteristic selection	V/F SVC 0 : valid when connected 1: valid when disconnected LED ones-place: X1 terminal LED tens-place: X2 terminal LED hundreds -place: X3 terminal LED thousands-place: reserved	$\begin{gathered} 0000 \\ (0000 \sim 1111) \end{gathered}$	RUN
$\begin{gathered} \text { F05.25 } \\ (0 \times 0519) \end{gathered}$	UP/DW terminal control selection	V/F SVC 0 : power-off frequency storage 1: no power-off frequency storage 2: adjustable in operation and clear all at stop	$\begin{gathered} 0 \\ (0 \sim 2) \end{gathered}$	STOP
$\begin{gathered} \text { F05.26 } \\ (0 \times 051 \mathrm{~A}) \end{gathered}$	UP/DW terminal controlling increase \& decrease rate of frequency	V/F SVC Set UP/DW terminal controlling increase \& decrease rate of frequency	$0.50 \mathrm{~Hz} / \mathrm{s}$ $(0.01 \mathrm{~Hz} / \mathrm{s} \sim 50.00 \mathrm{~Hz} / \mathrm{s})$	RUN
$\begin{gathered} \text { F05.27 } \\ (0 \times 051 \mathrm{~B}) \end{gathered}$	Terminal emergency stop deceleration time	V/F SVC Set emergency stop deceleration time g for the terminal	$\begin{gathered} 1.00 \mathrm{~s} \\ (0.01 \mathrm{~s} \sim 650.00 \mathrm{~s}) \end{gathered}$	RUN

Table 4-25 F05.2x group

F05.3x group: reserved

F05.4x group: analog type processing

Parameter code (Address)	Designation	Content		Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F05.43 } \\ (0 \mathrm{x} 052 \mathrm{~B}) \end{gathered}$	Analog input curve selection	V/F SVC 0 : straight line (default) 1: curve-1 2: curve 2	LED ones-place: AS LED tens-place: VS LED hundreds- place: reserved LED thousands-place: reserved	$\begin{gathered} 0000 \\ (0000 \sim 2222) \end{gathered}$	RUN

Table 4-26 F05.4x group

F05.5x group: analog linear processing

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F05.50 } \\ (0 \times 0532) \end{gathered}$	Lower limit AS	V/F SVC Define the signal received by the AS terminal, and the voltage signal below this value is processed as the lower limit.	$\begin{gathered} 0.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F05.51 } \\ (0 \mathrm{x} 0533) \end{gathered}$	Setting corresponding to lower limit AS	V/F SVC+ Set percentage for the set AS lower limit value.	$\begin{gathered} 0.00 \% \\ (-100.00 \% \sim 100.00 \%) \end{gathered}$	R
$\begin{gathered} \text { F05.52 } \\ (0 \times 0534) \end{gathered}$	Upper limit AS	V/F SVC Define the signal received by the AS terminal, and the voltage signal above this value is processed as the upper limit.	$\begin{gathered} 100.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F05.53 } \\ (0 \times 0535) \end{gathered}$	Setting corresponding to upper limit AS	V/F SVC Set percentage for the set AS upper limit value.	$\begin{gathered} 100.00 \% \\ (0.00 \% \sim 100.00 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F05.54 } \\ (0 \times 0536) \end{gathered}$	AS filter time	V/F SVC Define the size of the AS circuit analog signal filtering to eliminate interference signals.	$\begin{gathered} 0.100 \mathrm{~s} \\ (0.000 \mathrm{~s}-6.000 \mathrm{~s}) \end{gathered}$	RUN
$\begin{gathered} \text { F05.55 } \\ (0 \times 0537) \end{gathered}$	Lower limit VS	V/F SVC Define the signal received by the VS terminal, and the voltage signal below this value is processed as the lower limit.	$\begin{gathered} 0.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	RUN
$\begin{aligned} & \text { F05.56 } \\ & (0 \times 0538) \end{aligned}$	Setting corresponding to lower limit VS	V/F SVC Set percentage for the set VS lower limit value.	$\begin{gathered} 0.00 \% \\ (-100.00 \% \sim 100.00 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F05.57 } \\ (0 \times 0539) \end{gathered}$	Upper limit VS	V/F SVC Define the signal received by the VS terminal, and the voltage signal above this value is processed as the upper limit.	$\begin{gathered} 100.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F05.58 } \\ (0 \times 053 \mathrm{~A}) \end{gathered}$	Setting corresponding to upper limit VS	V/F SVC Set percentage for the set AS upper limit value.	$\begin{gathered} 100.00 \% \\ (0.00 \% \sim 100.00 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F05.59 } \\ (0 \times 053 B) \end{gathered}$	VS filter time	V/F SVC Define the size of the VS circuit analog signal filtering to eliminate interference signals.	$\begin{gathered} 0.100 \mathrm{~s} \\ (0.000 \mathrm{~s} \sim 6.000 \mathrm{~s}) \end{gathered}$	RUN

Table 4-27 F05.5x group

F05.6x group: analog quantity curve-1

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustab le attribute
$\begin{gathered} \text { F05.60 } \\ (0 \times 053 \mathrm{C}) \end{gathered}$	Curve-1 lower limit	V/F SVC Set lower limit value for curve-1.	$\begin{gathered} 0.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F05.61 } \\ (0 \times 053 \mathrm{D}) \end{gathered}$	Setting corresponding to curve-1 lower limit	V/F SVC Set percentage of lower limit value for curve-1.	$\begin{gathered} 0.00 \% \\ (-100.00 \% \sim 100.00 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F05.62 } \\ (0 \times 053 \mathrm{E}) \end{gathered}$	Input voltage on inflection point-1 of curve-1	V/F SVC Set input voltage on inflection point-1 of curve-1.	$\begin{gathered} 30.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F05.63 } \\ (0 \times 053 \mathrm{~F}) \end{gathered}$	Setting corresponding to F05.62	V/F SVC Set percentage of input voltage on inflection point-1 of curve-1.	$\begin{gathered} 30.00 \% \\ (-100.00 \% \sim 100.00 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F05.64 } \\ (0 \times 0540) \end{gathered}$	Input voltage on inflection point 2 of curve-1	V/F SVC Set input voltage on inflection point 2 of curve-1.	$\begin{gathered} 60.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F05.65 } \\ (0 \times 0541) \end{gathered}$	Setting corresponding to F05.64	V/F SVC Set percentage of input voltage on inflection point 2 of curve-1.	$\begin{gathered} 60.00 \% \\ (-100.00 \% \sim 100.00 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F05.66 } \\ (0 \times 0542) \end{gathered}$	Curve-1 upper limit	V/F SVC Set upper value for curve-1.	$\begin{gathered} 100.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F05.67 } \\ (0 \times 0543) \end{gathered}$	Setting corresponding to curve-1 upper limit	V/F SVC Set percentage of upper limit value for curve-1.	$\begin{gathered} 100.00 \% \\ (-100.00 \% \sim 100.00 \%) \end{gathered}$	RUN

Table 4-28 F05.6x group

F05.7x group: analog quantity curve 2

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F05.70 } \\ (0 \times 0546) \\ \hline \end{gathered}$	Curve-2 lower limit	V/F SVC Set lower limit value for curve-2.	$\begin{gathered} 0.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F05.71 } \\ (0 \times 0547) \end{gathered}$	Setting corresponding to curve-2 lower limit	V/F SVC Set percentage of lower limit value for curve-2.	$\begin{gathered} 0.00 \% \\ (-100.00 \% \sim 100.00 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F05.72 } \\ (0 \times 0548) \end{gathered}$	Input voltage on inflection point-1 of curve-2	V/F SVC Set input voltage on inflection point-1 of curve-2.	$\begin{gathered} 30.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	RUN
$\begin{aligned} & \text { F05.73 } \\ & \text { (0x0549) } \end{aligned}$	Setting corresponding to F05.72	V/F SVC Set percentage of input voltage on inflection point-1 of curve-2.	$\begin{gathered} 30.00 \% \\ (-100.00 \% \sim 100.00 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F05.74 } \\ (0 \times 054 \mathrm{~A}) \end{gathered}$	Input voltage on inflection point-2 of curve-2	V/F SVC Set input voltage on inflection point-2 of curve-2.	$\begin{gathered} 60.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F05.75 } \\ (0 \times 054 \mathrm{~B}) \end{gathered}$	Setting corresponding to F05.74	V/F SVC Set percentage of input voltage on inflection point-2 of curve-2.	$\begin{gathered} 60.00 \% \\ (-100.00 \% \sim 100.00 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F05.76 } \\ (0 \times 054 \mathrm{C}) \\ \hline \end{gathered}$	Curve-2 upper limit	V/F SVC Set upper value for curve-2.	$\begin{gathered} 100.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	RUN
$\begin{aligned} & \text { F05.77 } \\ & (0 \times 054 \mathrm{D}) \end{aligned}$	Setting corresponding to curve-2 upper limit	V/F SVC Set percentage of upper limit value for curve-2.	$\begin{gathered} 100.00 \% \\ (-100.00 \% \sim 100.00 \%) \end{gathered}$	RUN

F05.8x group: AS/VS as digital signal input terminal

Parameter code (Address)	Designation	Content		Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F05.80 } \\ (0 \times 0550) \end{gathered}$	Characteristic selection of AS/VS as digital signal input terminal	V/F SVC $0:$ effective for low level 1: effective for high level LED ones-place: AS	LED tens-place: VS LED hundreds-place: reserved LED thousands-place: reserved	$\begin{gathered} 0000 \\ (0000 \sim 1111) \end{gathered}$	RUN
$\begin{gathered} \text { F05.81 } \\ (0 \times 0551) \end{gathered}$	AS terminal function selection (used as X)	$\begin{aligned} & \text { V/F SVC } \\ & \text { See } X \text { terminal functions for details. } \end{aligned}$		$\begin{gathered} 0 \\ (0 \sim 95) \end{gathered}$	RUN
$\begin{gathered} \text { F05.82 } \\ (0 \times 0552) \end{gathered}$	AS high-level setting	V/F SVC It's high level when AS input setting is greater than the high-level setting.		$\begin{gathered} 70.00 \% \\ (0.00 \% \sim 100.00 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F05.83 } \\ (0 \times 0553) \end{gathered}$	AS low-level setting	V/F SVC It's low level when AS input setting is smaller than the low-level setting.		$\begin{gathered} 30.00 \% \\ (0.00 \% \sim 100.00 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F05.84 } \\ (0 \times 0554) \end{gathered}$	VS terminal function selection (used as X)	V/F SVC See X terminal functions for details.		$\begin{gathered} 0 \\ (0 \sim 95) \end{gathered}$	RUN
$\begin{gathered} \text { F05.85 } \\ (0 \times 0555) \end{gathered}$	VS high-level setting	V/F SVC It's high level when VS input setting is greater than the high-level setting.		$\begin{gathered} 70.00 \% \\ (0.00 \% \sim 100.00 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F05.86 } \\ (0 \times 0556) \end{gathered}$	VS low-level setting	V/F SVC It's low level when VS input setting is smaller than the low-level setting.		$\begin{gathered} 30.00 \% \\ (0.00 \% \sim 100.00 \%) \end{gathered}$	RUN

Table 4-30 F05.8x group

4.10 F06 Group: Output Terminal

F06.0x group: reserved

F06.1x group: reserved

F06.2x~F06.3x group: digital \& relay output

Parameter code (Address)	Designation	Content		Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F06.20 } \\ (0 \times 0614) \end{gathered}$	Output terminal polarity selection	V/F SVC 0 : positive 1: negative LED ones-place: Y terminal	Tens-place: relay output terminal Hundreds-place: reserved Thousands-place: reserved	$\begin{gathered} 0000 \\ (0000 \sim 1111) \end{gathered}$	RUN
$\begin{gathered} \text { F06.21 } \\ (0 \times 0615) \\ \hline \end{gathered}$	Output terminal Y	$\begin{aligned} & \text { V/F SVC } \\ & \text { See Y terminal functions for details. } \end{aligned}$		$\begin{gathered} 1 \\ (0 \sim 63) \end{gathered}$	RUN
$\begin{gathered} \text { F06.22 } \\ (0 \times 0616) \end{gathered}$	Relay output (TA- TB-TC)	$\begin{aligned} & \text { V/F SVC } \\ & \text { See Y terminal functions for details. } \end{aligned}$		$\begin{gathered} 4 \\ (0 \sim 63) \end{gathered}$	RUN
$\begin{gathered} \text { F06.25 } \\ (0 \times 0619) \\ \hline \end{gathered}$	Y output delayed start time	$\begin{array}{ll} \mathrm{V} / \mathrm{F} & \mathrm{SVC} \end{array}$ Set delay time when Y terminal starts output.		$\begin{gathered} 0.010 \mathrm{~s} \\ (0.000 \mathrm{~s} \sim 60.000 \mathrm{~s}) \end{gathered}$	RUN
$\begin{gathered} \text { F06.26 } \\ (0 x 061 \mathrm{~A}) \\ \hline \end{gathered}$	Relay output delayed start time	$\mathrm{V} / \mathrm{F} \quad \mathrm{SVC}$ Set delay time when relay starts output.		$\begin{gathered} 0.010 \mathrm{~s} \\ (0.000 \mathrm{~s} \sim 60.000 \mathrm{~s}) \\ \hline \end{gathered}$	RUN
$\begin{gathered} \text { F06.29 } \\ (0 x 061 \mathrm{D}) \\ \hline \end{gathered}$	Y output delayed stop time	$\mathrm{V} / \mathrm{F} \quad \mathrm{SVC}$ Set delay time when Y terminal stops output.		$\begin{gathered} 0.010 \mathrm{~s} \\ (0.000 \mathrm{~s} \sim 60.000 \mathrm{~s}) \\ \hline \end{gathered}$	RUN
$\begin{gathered} \text { F06.30 } \\ (0 \times 061 \mathrm{E}) \end{gathered}$	Relay output delayed stop time	V/F SVC Set delay time when relay stops output.		$\begin{gathered} 0.010 \mathrm{~s} \\ (0.000 \mathrm{~s} \sim 60.000 \mathrm{~s}) \end{gathered}$	RUN

F06.4x group: frequency detection

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute
$\begin{gathered} \hline \text { F06.40 } \\ (0 \times 0628) \\ \hline \end{gathered}$	Frequency detection value 1	V/F SVC Set frequency detection value 1 .	$\begin{gathered} 2.00 \mathrm{~Hz} \\ (0.00 \mathrm{~Hz} \sim \text { maximum }) \end{gathered}$	RUN
$\begin{gathered} \text { F06.41 } \\ (0 \times 0629) \end{gathered}$	Frequency detection amplitude 1	V/F SVC Set frequency detection amplitude 1 .	$\begin{gathered} 1.00 \mathrm{~Hz} \\ (0.00 \mathrm{~Hz} \sim \text { maximum } \end{gathered}$	RUN
$\begin{gathered} \text { F06.42 } \\ (0 \times 062 \mathrm{~A}) \end{gathered}$	Frequency detection value 2	V/F SVC Set frequency detection value 2 .	$\begin{gathered} 2.00 \mathrm{~Hz} \\ (0.00 \mathrm{~Hz} \sim \text { maximum }) \end{gathered}$	RUN
$\begin{gathered} \text { F06.43 } \\ (0 \times 062 B) \end{gathered}$	Frequency detection amplitude 2	V/F SVC Set frequency detection amplitude 2.	1.00 Hz $(0.00 \mathrm{~Hz} \sim$ maximum $)$	RUN
$\begin{gathered} \text { F06.44 } \\ (0 \times 062 \mathrm{C}) \\ \hline \end{gathered}$	Detection amplitude of set frequency	V/F SVC Set detection amplitude for set frequency.	$\begin{gathered} 2.00 \mathrm{~Hz} \\ (0.00 \mathrm{~Hz} \sim \text { maximum }) \end{gathered}$	RUN

Table 4-32 F06.4x group
F06.5x group: comparator output of monitored parameter

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F06.50 } \\ (0 \times 0632) \end{gathered}$	Comparator 1 monitoring selection	V/F SVC LED ones-\& tens-place: set "yy" between 00-63 among monitoring parameter "Cxx.yy"; LED hundreds-\&thousands-place: set "xx" between 00~07 among monitoring parameter "Cxx.yy";	$\begin{gathered} 0001 \\ (0000-0763) \end{gathered}$	RUN
$\begin{gathered} \text { F06.51 } \\ (0 \times 0633) \end{gathered}$	Upper limit of comparator 1	V/F SVC Set upper limit value of comparator 1 .	(up to F06.50)	RUN
$\begin{gathered} \text { F06.52 } \\ (0 \times 0634) \end{gathered}$	Lower limit of comparator 1	V/F SVC Set lower limit value of comparator 1 .	(up to F06.50)	RUN
$\begin{gathered} \text { F06.53 } \\ (0 \times 0635) \\ \hline \end{gathered}$	Comparator 1 bias	V/F SVC Set comparator 1 bias.	(up to F06.50)	RUN
$\begin{gathered} \text { F06.54 } \\ (0 \times 0636) \end{gathered}$	Action selection of sending comparator 1	V/F SVC 0 : go on running (digital terminal output only) 1: display warning and stop freely 2: display warning and go on running 3: forced stop	$\begin{gathered} 0 \\ (0 \sim 3) \end{gathered}$	RUN
$\begin{gathered} \text { F06.55 } \\ (0 \times 0637) \end{gathered}$	Comparator 2 monitoring selection	V/F SVC LED ones-\& tens-place: set "yy" between 00-63 among monitoring parameter "Cxx.yy"; LED hundreds-\&thousands-place: set "xx" between 00~07 among monitoring parameter "Cxx.yy";	$\begin{gathered} 0002 \\ (0000-0763) \end{gathered}$	RUN
$\begin{gathered} \text { F06.56 } \\ (0 \times 0638) \\ \hline \end{gathered}$	Upper limit of comparator 2	V/F SVC Set upper limit value of comparator 2.	(up to F06.55)	RUN
$\begin{gathered} \text { F06.57 } \\ (0 \times 0639) \end{gathered}$	Lower limit of comparator 2	V/F SVC Set lower limit value of comparator 2.	(up to F06.55)	RUN
$\begin{gathered} \text { F06.58 } \\ (0 \mathrm{x} 063 \mathrm{~A}) \end{gathered}$	Comparator 2 bias	V/F SVC Set comparator 2 bias.	(up to F06.55)	RUN
$\begin{gathered} \text { F06.59 } \\ (0 \times 063 \mathrm{~B}) \end{gathered}$	Action selection of sending comparator 2	V/F SVC 0 : go on running (digital terminal output only) 1: display warning and stop freely 2: display warning and go on running 3: forced stop	$\begin{gathered} 0 \\ (0 \sim 3) \end{gathered}$	RUN

F06.6x ~ F06.7x group: virtual input \& output terminals

Parameter code (Address)	Designation	Content		Factory default (setting range)	Adjustable attribute
$\begin{gathered} \hline \text { F06.60 } \\ (0 x 063 \mathrm{C}) \\ \sim \\ \text { F06.63 } \\ \text { (0x063F) } \\ \hline \end{gathered}$	Function selection of virtual vX1~vX3 terminals	V/F SVC See X terminal functions for details.		$\begin{gathered} 0 \\ (0 \sim 95) \end{gathered}$	STOP
$\begin{gathered} \text { F06.64 } \\ (0 \times 0640) \end{gathered}$	State source of vX terminal	V/F SVC 0 : interconnect with the virtual vYn terminal; 1: connect to the physical terminal Xn 2: function code valid or not	Ones-place: vX1 Tens-place: vX2 Hundreds-place: vX3 Thousands-place: reserved	$\begin{gathered} 0000 \\ (0000-0222) \end{gathered}$	RUN
$\begin{gathered} \text { F06.65 } \\ (0 \times 0641) \end{gathered}$	Virtual vX terminal function code status setting	V/F SVC 0 : invalid; 1: valid; Ones-place: vX1	Tens-place: vX2 Hundreds-place: vX3 Thousands-place: reserved	$\begin{gathered} 0000 \\ (0000-0111) \end{gathered}$	RUN
F06.66 (0x0642) F06.69 (0x0645) F06.69	Output selection of virtual vY1~vY3 terminals	V/F SVC See Y terminal functions for details.		$\begin{gathered} 0 \\ (0-63) \end{gathered}$	RUN
$\begin{gathered} \hline \text { F06.70 } \\ (0 \times 0646) \\ \sim \\ \text { F06.73 } \\ (0 \times 0649) \\ \hline \end{gathered}$	vY1~ vY3 output delayed start time	V/F SVC Set delay time when vY1~vY3 starts output.		$\begin{gathered} 0.010 \mathrm{~s} \\ (0.000 \mathrm{~s} \sim 60.000 \mathrm{~s}) \end{gathered}$	RUN
$\begin{gathered} \hline \text { F06.74 } \\ (0 \times 064 \mathrm{~A}) \\ \sim \\ \text { F06.77 } \\ \text { (0x064D) } \\ \hline \end{gathered}$	vY1~ vY3 output delayed stop time	V/F SVC Set delay time when $\mathrm{vY} 1 \sim \mathrm{vY} 3$ stops output.		$\begin{gathered} 0.010 \mathrm{~s} \\ (0.000 \mathrm{~s} \sim 60.000 \mathrm{~s}) \end{gathered}$	RUN

Table 4-34 F06.6x \sim F06.7x group

4.11 F07 Group: Running Control

F07.0x group: start control

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F07.00 } \\ (0 \times 0700) \end{gathered}$	Start method	V/F SVC 0 : started by the starting frequency 1: DC braking before started by the starting frequency 2: speed tracking \& direction judgment and then start	$\begin{gathered} 0 \\ (0 \sim 2) \end{gathered}$	STOP
$\begin{gathered} \text { F07.01 } \\ (0 \times 0701) \end{gathered}$	Start pre-excitation time	V/F SVC Only asynchronous motor vector control without PG supports pre-excitation, so ignore this code on other motors.	$\begin{gathered} 0.00 \mathrm{~s} \\ (0.00 \mathrm{~s} \sim 60.00 \mathrm{~s}) \end{gathered}$	STOP

$\begin{gathered} \text { F07.02 } \\ (0 \times 0702) \end{gathered}$	Start frequency	V/F SVC Remain stop and standby when set frequency is lower than start frequency.		0.50 Hz $(0.00 \mathrm{~Hz} \sim$ upper limit frequency via number entering $)$	STOP
$\begin{gathered} \text { F07.03 } \\ (0 \times 0703) \end{gathered}$	Start protection selection	V/F SVC 0 : off 1: on LED ones-place: termina exception Tens-place: jogging term exception Hundreds-place: termina command channel switc Thousands-place: reserve Note: When the free stop, commands are valid, the default.	otection activated on exit protection activated exit tection activated when the to the terminal nergency stop and forced stop minal protection is enabled by	$\begin{gathered} 0111 \\ (0000 \sim 1111) \end{gathered}$	STOP
$\begin{gathered} \text { F07.05 } \\ (0 \times 0705) \end{gathered}$	Rotation direction selection	V/F SVC LED ones-place: rotation direction 0 : remain; 1: reverse the direction; Tens-place: rotation direction permission: 0 : forward and reverse commands allowed Note: Initialization will n Parameter downloading value.	1:forward command only 2: reverse command only Hundreds-place: frequency controlling command direction: 0 : controlling command direction invalid 1 : controlling command direction valid Thousands-place: reserved restore this value. not change the ones digit	$\begin{gathered} 0000 \\ (0000 \sim 1121) \end{gathered}$	STOP
$\begin{gathered} \text { F07.06 } \\ (0 \times 0706) \end{gathered}$	Restart after power failure selection	V/F SVC 0 : invalid 1 : speed tracking and res 2: restart as the start mod		$\begin{gathered} 0 \\ (0 \sim 2) \end{gathered}$	STOP
$\begin{gathered} \text { F07.07 } \\ (0 \times 0707) \end{gathered}$	Restart waiting time after power cut.	V/F SVC Set the waiting time to r	t after power cut.	$\begin{gathered} 0.50 \mathrm{~s} \\ (0.00 \mathrm{~s}-60.00 \mathrm{~s}) \\ \hline \end{gathered}$	STOP

Table 4-35 F07.0x group

F07.1x group: stop control

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute
$\begin{aligned} & \text { F07.10 } \\ & (0 \times 070 \mathrm{~A}) \end{aligned}$	Stop method	V/F SVC 0 : deceleration stop 1: free stop	$\begin{gathered} 0 \\ (0 \sim 1) \end{gathered}$	RUN
$\begin{aligned} & \text { F07.11 } \\ & (0 \times 070 B) \end{aligned}$	Stop detection frequency	V/F SVC Stop when inverter output frequency is lower than this value under deceleration stop.	$\begin{gathered} 0.50 \mathrm{~Hz} \\ (0.00 \mathrm{~Hz} \\ \text { upper limit via } \\ \text { number entering }) \end{gathered}$	RUN
$\begin{gathered} \text { F07.12 } \\ (0 \times 070 \mathrm{C}) \\ \hline \end{gathered}$	Limit time to restart after stop	V/F SVC Set waiting time to restart after stop.	$\begin{gathered} 0.000 \mathrm{~s} \\ (0.000 \mathrm{~s}-60.000 \mathrm{~s}) \\ \hline \end{gathered}$	STOP
$\begin{aligned} & \text { F07.15 } \\ & (0 \mathrm{x} 070 \mathrm{~F}) \end{aligned}$	action selection when lower than minimum frequency	V/F SVC 0 : run by frequency command 1: stop freely and remains pause 2: run at the minimum frequency 3: run at zero speed	$\begin{gathered} 2 \\ (0 \sim 3) \end{gathered}$	RUN
F07.16	Torque holding	V/F SVC	60.0\%	RUN

$(0 x 0710)$	current at zero speed	Set torque holding current at zero speed, 100.0% of rated current of the inverter.	$(0.0 \% \sim 150.0 \%)$	
F07.17 (0×0711)	Torque holding time at zero speed	V/F SVC Set Torque holding time at zero speed.	0.0 s	
F07.18 $(0 x 0712)$	Forward \& reverse rotation dead time	V/F SVC Zero frequency holding time during forward \& reverse switching.	0.0 s $(0.0 \mathrm{~s} \sim 120.0 \mathrm{~s})$	RUN

Table 4-36 F07.1x group

F07.2x group: DC braking and speed tracking

Parameter code (Address)	Designation	Content		Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F07.20 } \\ (0 \times 0714) \end{gathered}$	Braking current before starting	V/F SVC 100.0% of the motor rated current, and the upper limit of the braking current is the rated current of the inverter.		$\begin{gathered} 60.0 \% \\ (0.0 \% \sim 150.0 \%) \end{gathered}$	STOP
$\begin{gathered} \text { F07.21 } \\ (0 \mathrm{x} 0715) \\ \hline \end{gathered}$	Braking time before starting	$\mathrm{V} / \mathrm{F} \quad \mathrm{SVC}$ Set braking time before starting		$\begin{gathered} 0.0 \mathrm{~s} \\ (0.0 \mathrm{~s} \sim 60.0 \mathrm{~s}) \end{gathered}$	STOP
$\begin{gathered} \mathrm{F} 07.22 \\ (0 \mathrm{x} 0716) \\ \hline \end{gathered}$	DC braking start frequency	V/F SVC Set DC braking start frequency		$\begin{gathered} \hline 1.00 \mathrm{~Hz} \\ (0.00 \mathrm{~Hz} \sim 50.00 \mathrm{~Hz}) \end{gathered}$	STOP
$\begin{gathered} \text { F07.23 } \\ (0 \times 0717) \end{gathered}$	DC braking current	V/F SVC The reference is the rated current of the inverter, and the internal limit shall not exceed the rated current of the motor.		$\begin{gathered} 60.0 \% \\ (0.0 \% \sim 150.0 \%) \end{gathered}$	STOP
$\begin{gathered} \text { F07.24 } \\ (0 \times 0718) \\ \hline \end{gathered}$	DC braking time of stop	V/F SVC Set DC braking time in stop state.		$\begin{gathered} 0.0 \mathrm{~s} \\ (0.0 \mathrm{~s} \sim 60.0 \mathrm{~s}) \\ \hline \end{gathered}$	STOP
$\begin{gathered} \text { F07.25 } \\ (0 \times 0719) \end{gathered}$	Speed tracking	V/F SVC Ones-place: tracking mode 0 : tracking from the maximum frequency; 1: tracking from stop frequency; Tens-place: reverse tracking 0 : off	1: on Hundreds-place: tracking source 0 : software tracking; 1: hardware tracking; Thousands-place: reserved	$\begin{gathered} 0000 \\ (0000 \sim 1111) \end{gathered}$	STOP
$\begin{gathered} \text { F07.26 } \\ (0 \times 071 \mathrm{~A}) \\ \hline \end{gathered}$	Speed tracking time	V/F SVC Set speed tracking time		$\begin{gathered} 0.50 \mathrm{~s} \\ (0.00 \mathrm{~s} \sim 60.00 \mathrm{~s}) \end{gathered}$	STOP
$\begin{gathered} \text { F07.27 } \\ \text { (0x071B) } \\ \hline \end{gathered}$	Speed tracking stop delay time	V/F SVC Set delay time when speed tracking stops.		$\begin{gathered} 1.00 \mathrm{~s} \\ (0.00 \mathrm{~s} \sim 60.00 \mathrm{~s}) \\ \hline \end{gathered}$	STOP
$\begin{gathered} \text { F07.28 } \\ (0 \mathrm{x} 071 \mathrm{C}) \\ \hline \end{gathered}$	Speed tracking current	$\begin{aligned} & \text { V/F } \quad \text { SVC } \\ & \text { Set speed tracking current. } \end{aligned}$		$\begin{gathered} 120.0 \% \\ (0.0 \%-400.0 \%) \\ \hline \end{gathered}$	STOP

Table 4-37 F07.2x group

F07.3x group: jogging

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F07.30 } \\ (0 \times 071 \mathrm{E}) \end{gathered}$	Jogging frequency	V/F SVC Set running frequency of jogging.	5.00 Hz $(0.00 \mathrm{~Hz} \sim$ maximum frequency $)$	RUN
$\begin{gathered} \text { F07.31 } \\ (0 \times 071 \mathrm{~F}) \end{gathered}$	Jogging acceleration time	V/F SVC Set jogging acceleration time.	$\begin{gathered} 10.00 \mathrm{~s} \\ (0.00 \mathrm{~s} \sim 650.00 \mathrm{~s}) \end{gathered}$	RUN
$\begin{gathered} \text { F07.32 } \\ (0 \times 0720) \\ \hline \end{gathered}$	Jogging deceleration time	V/F SVC Set jogging deceleration time.	$\begin{gathered} 10.00 \mathrm{~s} \\ (0.00 \mathrm{~s} \sim 650.00 \mathrm{~s}) \\ \hline \end{gathered}$	RUN
$\begin{gathered} \text { F07.33 } \\ (0 \times 0721) \end{gathered}$	Jogging S-curve selection	$\begin{aligned} & \hline \text { V/F SVC } \\ & \text { 0: invalid } \\ & \text { 1: valid } \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ (0 \sim 1) \end{gathered}$	RUN
$\begin{gathered} \text { F07.34 } \\ (0 \times 0722) \end{gathered}$	Jogging stop mode	V/F SVC 0 : stop as F7.10 setting; 1: decelerate and stop	$\begin{gathered} 0 \\ (0 \sim 1) \end{gathered}$	RUN

F07.4x group: start \& stop holding frequency and hopping frequency

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F07.40 } \\ (0 \times 0728) \end{gathered}$	Start holding frequency	V/F SVC Start holding frequency is higher than the start frequency and lower than the upper limit frequency via number entering.	0.50 Hz $(0.00 \mathrm{~Hz} \sim$ upper limit frequency via number entering $)$	STOP
$\begin{gathered} \text { F07.41 } \\ (0 \times 0729) \end{gathered}$	Start holding frequency time	V/F SVC This shall be higher than the starting frequency, and the starting frequency should be taken when it is lower than it.	$\begin{gathered} 0.00 \mathrm{~s} \\ (0.00 \mathrm{~s} \sim 60.00 \mathrm{~s}) \end{gathered}$	STOP
$\begin{gathered} \text { F07.42 } \\ (0 \times 072 \mathrm{~A}) \end{gathered}$	Stop holding frequency	V/F SVC Set stop holding frequency.	0.50 Hz ($0.00 \mathrm{~Hz} \sim$ upper limit frequency via number entering))	STOP
$\begin{gathered} \text { F07.43 } \\ (0 \times 072 \mathrm{~B}) \end{gathered}$	Stop holding frequency time	V/F SVC Stop holding frequency time is invalid when terminal DC braking and jogging; - stop DC braking is effective while the stop holding frequency is lower than stop DC braking frequency; no stop DC braking and the stop holding frequency is lower than the stop detection frequency	$\begin{gathered} 0.00 \mathrm{~s} \\ (0.00 \mathrm{~s} \sim 60.00 \mathrm{~s}) \end{gathered}$	STOP
$\begin{gathered} \text { F07.44 } \\ (0 \times 072 \mathrm{C}) \end{gathered}$	Hopping frequency 1	V/F SVC Set hopping frequency 1 .	0.00 Hz $(0.00 \mathrm{~Hz} \sim$ maximum frequency $)$	RUN
$\begin{gathered} \text { F07.45 } \\ \text { (0x072D) } \end{gathered}$	Hopping frequency amplitude	V/F SVC Set hopping frequencyl amplitude.	$\begin{gathered} 0.00 \mathrm{~Hz} \\ (0.00 \mathrm{~Hz} \sim \\ \text { maximum frequency) } \end{gathered}$	RUN
$\begin{gathered} \text { F07.46 } \\ (0 \times 072 \mathrm{E}) \end{gathered}$	Hopping frequency 2	V/F SVC Set hopping frequency 2 .	0.00 Hz $(0.00 \mathrm{~Hz} \sim$ maximum frequency)	RUN
$\begin{gathered} \text { F07.47 } \\ (0 \times 072 \mathrm{~F}) \end{gathered}$	Hopping frequency amplitude	V/F SVC Set hopping frequency 2 amplitude.	0.00 Hz $(0.00 \mathrm{~Hz} \sim$ maximum frequency	RUN

Table 4-39 F07.4x group

4.12 F08 Group: Auxiliary Control 1

F08.0x group: counting and timing

Parameter code (Address)	Designation	Content		Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F08.00 } \\ (0 \times 0800) \end{gathered}$	Counter input source	V/F SVC 0 : from common X terminal	1: reserved 2: reserved	$\begin{gathered} 0 \\ (0 \sim 2) \end{gathered}$	RUN
$\begin{gathered} \text { F08.01 } \\ (0 \times 0801) \end{gathered}$	Counter input frequency division	V/F SVC Set counter input frequency division		$\begin{gathered} 0 \\ (0 \sim 6000) \end{gathered}$	RUN
$\begin{gathered} \text { F08.02 } \\ (0 x 0802) \\ \hline \end{gathered}$	Counter maximum	V/F SVC Set counter maximum value.		$\begin{gathered} 1000 \\ (0 \sim 65000) \end{gathered}$	RUN
F08.03	Counter value	V/F SVC		500	RUN

(0x0803)		Set counter value.		(0-65000)	
$\begin{gathered} \hline \text { F08.04 } \\ (0 \times 0804) \\ \hline \end{gathered}$	Pulses per meter	V/F SVC Set pulses per meter.		$\begin{gathered} 10.0 \\ (0.1 \sim 6553.5) \end{gathered}$	RUN
$\begin{gathered} \text { F08.05 } \\ (0 \times 0805) \end{gathered}$	Length	V/F SVC Set a length, when the actual length is greater than or equal to setting length, the terminal will output a valid signal, then reset after the output		$\begin{gathered} 1000 \mathrm{~m} \\ (0 \mathrm{~m} \sim 65535 \mathrm{~m}) \end{gathered}$	STOP
$\begin{gathered} \text { F08.06 } \\ (0 \times 0806) \end{gathered}$	Actual length	V/F SVC No power-off saving.		$\begin{gathered} 0 \mathrm{~m} \\ (0 \mathrm{~m} \sim 65535 \mathrm{~m}) \end{gathered}$	STOP
$\begin{gathered} \text { F08.07 } \\ (0 \times 0807) \end{gathered}$	Timer time unit	V/F SVC 0 : second (s)	$\begin{aligned} & \text { 1: minute }(\mathrm{m}) \\ & \text { 2: hour }(\mathrm{h}) \end{aligned}$	$\begin{gathered} 0 \\ (0 \sim 2) \end{gathered}$	STOP
$\begin{gathered} \hline \text { F08.08 } \\ (0 \times 0808) \end{gathered}$	Timer value	V/F SVC Set timer value.		$\begin{gathered} 0 \\ (0 \sim 65000) \\ \hline \end{gathered}$	STOP

Table 4-40 F08.0x group

F08.1x ~ F08.2x group: reserved

F08.3x group: swing frequency

Parameter code (Address)	Designation	Content		Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F08.30 } \\ (0 \times 081 \mathrm{E}) \end{gathered}$	Swing frequency	V/F SVC 0 : swing frequency invalid 1 : swing frequency valid		$\begin{gathered} 0 \\ (0 \sim 1) \end{gathered}$	STOP
$\begin{gathered} \text { F08.31 } \\ (0 \times 081 \mathrm{~F}) \end{gathered}$	Swing frequency amplitude	V/F SVC Ones-place: start mode 0: auto; 1: manual terminal setting Tens-place: amplitude control 0 : refer to center frequency	1: refer to maximum frequency Hundreds-place: preset frequency 0 : unenabled 1 : enabled Thousands-place: reserved	$\begin{gathered} 0000 \\ (0000-0111) \end{gathered}$	STOP
$\begin{gathered} \text { F08.32 } \\ (0 \times 0820) \end{gathered}$	Preset swing frequency	V/F SVC Set preset swing frequency.		$\begin{gathered} \hline 0.00 \mathrm{~Hz} \\ (0.00 \mathrm{~Hz} \sim \\ \text { maximum } \\ \text { frequency }) \\ \hline \end{gathered}$	STOP
$\begin{gathered} \text { F08.33 } \\ (0 \times 0821) \end{gathered}$	Preset swing frequency waiting time	V/F SVC Set preset swing frequency waiting time.		$\begin{gathered} 0.0 \mathrm{~s} \\ (0.0 \mathrm{~s} \sim 3600.0 \mathrm{~s}) \end{gathered}$	STOP
$\begin{gathered} \hline \text { F08.34 } \\ (0 \times 0822) \\ \hline \end{gathered}$	Swing frequency amplitude value	V/F SVC Set swing frequency amplitude value.		$\begin{gathered} \hline 10.0 \% \\ (0.0 \% \sim 50.0 \%) \end{gathered}$	STOP
$\begin{gathered} \hline \text { F08.35 } \\ (0 \times 0823) \\ \hline \end{gathered}$	Hopping frequency	V/F SVC Set hopping frequency.		$\begin{gathered} 10.0 \% \\ (0.0 \% \sim 50.0 \%) \\ \hline \end{gathered}$	STOP
$\begin{gathered} \text { F08.36 } \\ (0 \times 0824) \\ \hline \end{gathered}$	Triangular wave rise time	V/F SVC Set triangular wave rise time.		$\begin{gathered} 5.00 \mathrm{~s} \\ (0.00 \mathrm{~s} \sim 650.00 \mathrm{~s}) \\ \hline \end{gathered}$	STOP
$\begin{gathered} \text { F08.37 } \\ (0 \times 0825) \\ \hline \end{gathered}$	Triangular wave fall time	V/F SVC Set triangular wave fall time.		$\begin{gathered} 5.00 \mathrm{~s} \\ (0.00 \mathrm{~s} \sim 650.00 \mathrm{~s}) \end{gathered}$	STOP

Table 4-41 F08.3x group

4.13 F09 Group: Auxiliary Control 2

F09.0x group: maintenance

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute
F09.02	Device maintenance warning selection	V/F SVC Ones-place: cooling fan 0: invalid; 1: valid	0×0000	RUN

		Tens-place: main relay $0:$ invalid; 1: valid Hundreds-place: reserved Thousands-place: reserved		
F09.03 $(0 x 0903)$	Cooling fan maintenance	V/F SVC Set hhis parameter in hours and set it to 0 after replacing with a new one.	0 $(0 \sim 65535)$	STOP
F09.04 $(0 x 0904)$	Main relay maintenance	V/F SVC Set this parameter to 0.0% after replacing with a new relay.	0.0% $(0.0 \% \sim 150.0 \%)$	STOP

Table 4-42 F09.0x group

4.14 F10 Group: Protection Parameter

F10.0x group: current protection

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F10.00 } \\ (0 \times 0 \mathrm{~A} 00) \end{gathered}$	Overcurrent suppression	V/F SVC Automatically limited output current shall not exceed the set overcurrent suppression point to prevent overcurrent fault triggered by excessive current. 0 : suppression always valid; 1: valid during acceleration \& deceleration, while invalid during constant speed	$\begin{gathered} 0 \\ (0 \sim 1) \end{gathered}$	RUN
$\begin{gathered} \text { F10.01 } \\ (0 \times 0 \mathrm{~A} 01) \end{gathered}$	Overcurrent suppression point	V/F SVC Set the load current limiting level, 100% of rated motor current.	$\begin{gathered} 160.0 \% \\ (0.0 \% \sim 300.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F10.02 } \\ (0 \mathrm{x} 0 \mathrm{~A} 02) \end{gathered}$	Overcurrent suppression gain	V/F SVC Set the response effect of overcurrent suppression.	$\begin{gathered} 100.0 \% \\ (0.0 \% \sim 500.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F10.03 } \\ (0 \times 0 \mathrm{~A} 03) \end{gathered}$	Current protection setting 1	V/F SVC Set whether the current-related protection is activated: Ones-place: current limiting by wave (CBC) 0 : off 1: on Tens-place: OC protection interference suppression 0 : normal 1: primary interference suppression 2: secondary interference suppression Hundreds-place: SC protection interference suppression 0 : normal 1: primary interference suppression 2: secondary interference suppression LED thousands-place: reserved	$\begin{gathered} 0001 \\ (0000 \sim \mathrm{~F} 221) \end{gathered}$	STOP
$\begin{gathered} \text { F10.04 } \\ (0 \times 0 \mathrm{~A} 04) \end{gathered}$	Current protection setting 2	```V/F SVC Ones-place: three-phase current and protection selection 0 : off; 1 : on Tens-place: three-phase current unbalance protection, fault code E. oLF4. 0 : off; 1 : on```	$\begin{gathered} 0001 \\ (0000 \sim 0011) \end{gathered}$	STOP
$\begin{gathered} \text { F10.05 } \\ (0 \times 0 \mathrm{~A} 05) \end{gathered}$	Current imbalance threshold	V/F SVC The ratio of the maximum to the minimum phase in the three phases of the current, and the set value is compared to tell if it's current imbalance fault.	$\begin{gathered} 160 \% \\ (0 \% \sim 500 \%) \end{gathered}$	STOP
$\begin{gathered} \text { F10.06 } \\ (0 \mathrm{x} 0 \mathrm{~A} 06) \end{gathered}$	Current imbalance filtering coefficient	V/F SVC Increase this parameter on occasions with great current	$\begin{gathered} 2.0 \\ (0.0 \sim 60.0) \end{gathered}$	STOP

		fluctuation.		

Table 4-43 F10.0x group

F10.1x group: voltage protection

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute
$\begin{aligned} & \text { F10.11 } \\ & (0 \times 0 \mathrm{~A} 0 \mathrm{~B}) \end{aligned}$	Bus overvoltage suppression	V/F SVC When the bus voltage is greater than the overvoltage suppression point, the acceleration and deceleration will be slowed down or stopped to prevent the overvoltage fault. Ones-place: overvoltage suppression 0 : off, 1: on Tens-place: overexcitation 0 : off; 1: enabled during deceleration; 2 : enabled during running;	$\begin{gathered} 0011 \\ (0000 \sim 0021) \end{gathered}$	STOP
$\begin{gathered} \text { F10.12 } \\ (0 \times 0 \mathrm{AOC}) \end{gathered}$	Bus overvoltage suppression point	V/F SVC Set the bus voltage value for triggering the overvoltage suppression function Note: T3 overpressure point : $820 \mathrm{~V}(750 \mathrm{~V} \sim 840 \mathrm{~V})$ S2 overpressure point : $400 \mathrm{~V}(360 \mathrm{~V} \sim 410 \mathrm{~V})$	T3:750V S2:370V (T3:650V $\sim 800 \mathrm{~V}$ S2:340V $\sim 380 \mathrm{~V}$) Also limited by overvoltage point	STOP
$\begin{gathered} \text { F10.13 } \\ \text { (0x0A0D) } \end{gathered}$	Bus overvoltage suppression gain	V/F SVC Set the response effect of overvoltage suppression。	$\begin{gathered} 100.0 \% \\ (0.0 \% 500.0 \%) \\ \hline \end{gathered}$	RUN
$\begin{aligned} & \text { F10.14 } \\ & (0 \times 0 \mathrm{~A} 0 \mathrm{E}) \end{aligned}$	Dynamic braking	V/F SVC Set dynamic braking on or off; 0: off; 1: on with the overvoltage suppression off; 2: on wht the overvoltage suppression on;	$\begin{gathered} 2 \\ (0 \sim 2) \end{gathered}$	RUN
$\begin{gathered} \text { F10.15 } \\ (0 \times 0 \mathrm{~A} 0 \mathrm{~F}) \end{gathered}$	Dynamic braking action voltage	V/F SVC Set the dynamic braking action voltage. When the bus voltage is greater than this value, this function starts to act. Note: T 3 overpressure point $: 820 \mathrm{~V}(750 \mathrm{~V} \sim 840 \mathrm{~V})$ S2 overpressure point : $400 \mathrm{~V}(360 \mathrm{~V} \sim 410 \mathrm{~V})$	T3:740V S2:360V (T3:650V $\sim 800 \mathrm{~V}$ S2:350V $\sim 390 \mathrm{~V}$) Also limited by overvoltage point	RUN
$\begin{aligned} & \text { F10.16 } \\ & (0 \times 0 \mathrm{~A} 10) \end{aligned}$	Bus undervoltage suppression	V/F SVC When the bus voltage is lower than the undervoltage suppression point, the operating frequency will be automatically adjusted to stop the bus voltage reduction to prevent undervoltage fault reporting 0 : off; 1: on	$\begin{gathered} 0 \\ (0 \sim 1) \end{gathered}$	STOP
$\begin{aligned} & \text { F10.17 } \\ & (0 \times 0 \mathrm{~A} 11) \end{aligned}$	Bus undervoltage suppression point	V/F SVC Set the bus voltage value to trigger the undervoltage suppression function. Note: T3 overpressure point $: 820 \mathrm{~V}(750 \mathrm{~V} \sim 840 \mathrm{~V})$ S2 overpressure point : $400 \mathrm{~V}(360 \mathrm{~V} \sim 410 \mathrm{~V})$	$\begin{gathered} \text { T3:430 } \\ \text { S2:240 } \\ \text { (T3:350V } \sim 450 \mathrm{~V} \\ \text { S2:180V } \sim 260 \mathrm{~V} \text {) } \\ \text { Also limited by } \\ \text { overvoltage point } \end{gathered}$	STOP
$\begin{gathered} \text { F10.18 } \\ (0 \times 0 \mathrm{~A} 12) \end{gathered}$	Busbar undervoltage suppression gain	V/F SVC Set the response effect of undervoltage suppression.	$\begin{gathered} 100.0 \% \\ (0.0 \% \sim 500.0 \%) \end{gathered}$	RUN

$\begin{gathered} \text { F10.19 } \\ (0 \times 0 \mathrm{~A} 13) \end{gathered}$	Busbar undervoltage protection point	V/F SVC Set the allowable lower limit of busbar voltage, below which inverter will report undervoltage fault. Note :T3 overpressure point : $820 \mathrm{~V}(750 \mathrm{~V} \sim 840 \mathrm{~V})$ S2 overpressure point : $400 \mathrm{~V}(360 \mathrm{~V} \sim 410 \mathrm{~V})$	T3:320V S2:190 (T3:300V $\sim 400 \mathrm{~V}$ S2:160V 240 V) Also limited by overvoltage point	STOP

Table 4-44 F10.1x group

F10.2x group: auxiliary protection

Parameter code (Address)	Designation	Content	$\begin{gathered} \hline \begin{array}{c} \text { Factory } \\ \text { default } \end{array} \\ \text { (setting range) } \end{gathered}$	Adjustable attribute
$\begin{gathered} \text { F10.20 } \\ (0 \times 0 \mathrm{~A} 14) \end{gathered}$	Input \& output phase loss protection	V/F SVC Set input \& output phase loss protection on or off. Ones-place: output phase loss protection 0 : off; 1: on; Tens-place: input phase loss protection 0 : off; 1:on, report A. iLF warning when phase loss detected but go on running; 2:on, report A. iLF warning when phase loss detected and stop freely. Hundreds-place; reserved; Thousands-place: reserved;	$\begin{gathered} 0021 \\ (0000 \sim 1121) \end{gathered}$	STOP
$\begin{gathered} \text { F10.21 } \\ (0 \times 0 \mathrm{~A} 15) \end{gathered}$	Input phase loss threshold value	V/F SVC Set percentage of the input phase loss detected voltage, 100% of the rated bus voltage.	$\begin{gathered} 10.0 \% \\ (0.0 \% \sim 30.0 \%) \end{gathered}$	STOP
$\begin{gathered} \text { F10.22 } \\ (0 \times 0 \mathrm{~A} 16) \end{gathered}$	Grounding short circuit protection	V/F SVC Set inverter output \& cooling fan grounding short circuit protection on or off; Ones-place: Output grounding short circuit protection: 0 : off; 1: on; Tens-place: Cooling fan grounding short circuit protection: 0 : off; 1: on; Hundreds-place; reserved; Thousands-place: reserved;	$\begin{gathered} 11 \\ (00 \sim 12) \end{gathered}$	STOP
$\begin{gathered} \text { F10.23 } \\ (0 \times 0 \mathrm{~A} 17) \end{gathered}$	Cooling fan	Set the operation mode of the cooling fan 0 : fan runs after the inverter is powered on 1: fan runs or not up to temperature after shutdown; 2: fan stops after the set time of F10.24 during shutdown, and runs or not up to temperature then.	$\begin{gathered} 1 \\ (0 \sim 2) \end{gathered}$	RUN
$\begin{gathered} \text { F10.24 } \\ (0 \times 0 \mathrm{~A} 18) \end{gathered}$	Delay time of cooling fan	V/F SVC Set the time from release of the running command to the cooling fan stops running	$\begin{gathered} 30.00 \mathrm{~s} \\ (0.00 \mathrm{~s} \sim 600.00 \mathrm{~s}) \end{gathered}$	STOP
$\begin{gathered} \text { F10.25 } \\ (0 \times 0 \mathrm{~A} 19) \end{gathered}$	Inverter overheating oH 1 warning detection level	V/F SVC Set the temperature of overheat warning of the inverter, any value detected larger will cause overheating warning.	$\begin{gathered} 80.0^{\circ} \mathrm{C} \\ \left(0.0^{\circ} \mathrm{C}\right. \\ \left.\sim 100.0^{\circ} \mathrm{C}\right) \end{gathered}$	RUN

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute

Table 4-46 F10.3x group
F10.4x group: stall protection

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute

		0 : detection off; 1: on at constant speed only; 2: on; Tens-place: warning mode 0 : stop freely and report warning; 1: report warning and go on running		
$\begin{gathered} \text { F10.41 } \\ (0 \times 0 \mathrm{~A} 29) \end{gathered}$	Excessive speed deviation detection threshold value	V/F SVC Set the detectable value with excessive speed deviation, 100% of F 01.10 [maximum frequency]	$\begin{gathered} 10.0 \% \\ (0.0 \% \sim 60.0 \%) \end{gathered}$	STOP
$\begin{gathered} \text { F10.42 } \\ (0 \times 0 \mathrm{~A} 2 \mathrm{~A}) \end{gathered}$	Excessive speed deviation detection time	V/F SVC Set the duration of detecting speed deviation. If the given speed \& feedback speed deviation is greater than F10.41 and lasts for this setting, report excessive speed deviation warning.	$\begin{gathered} 2.0 \mathrm{~s} \\ (0.0 \mathrm{~s}-60.0 \mathrm{~s}) \end{gathered}$	STOP
$\begin{gathered} \text { F10.43 } \\ (0 \times 0 \mathrm{~A} 2 \mathrm{~B}) \end{gathered}$	Stall protection	V/F SVC Set detection mode and warning mode of motor stall. Ones-place: detection mode selection 0 : detection off; 1: on at constant speed only; 2: on; Tens-place: warning mode 0 : stop freely and report warning; 1 : report warning and go on running	$\begin{gathered} 02 \\ (00 \sim 12) \end{gathered}$	STOP
$\begin{gathered} \text { F10.44 } \\ (0 \times 0 \mathrm{~A} 2 \mathrm{C}) \end{gathered}$	Stall protection detection threshold value	V/F SVC Set the detectable value of stall warning, which corresponds 100% of F01.10[maximum frequency]	$\begin{gathered} 110.0 \% \\ (0.0 \% \sim 150.0 \%) \end{gathered}$	STOP
$\begin{gathered} \text { F10.45 } \\ (0 \times 0 \mathrm{~A} 2 \mathrm{D}) \end{gathered}$	Stall protection detection time	V/F SVC Set the duration of stall detection. If feedback speed deviation is greater than F10.44 and lasts for this setting, report stall warning.	$\begin{gathered} 0.100 \mathrm{~s} \\ (0.000 \mathrm{~s} \sim 2.000 \mathrm{~s}) \end{gathered}$	STOP

Table 4-47 F10.4x group
F10.5x group: fault recovery protection and motor overload

Parameter code (Address)	Designation	Content	\qquad	Adjustable attribute
$\begin{gathered} \text { F10.50 } \\ (0 \times 0 \mathrm{~A} 32) \end{gathered}$	Times of selfrecovery	V/F SVC Set the allowable times of self-recovery. Note: 0 indicates that the fault self-recovery function is off. Otherwise, it's on.	$\begin{gathered} 0 \\ (0 \sim 10) \end{gathered}$	STOP
$\begin{gathered} \text { F10.51 } \\ (0 \times 0 \mathrm{~A} 33) \end{gathered}$	Interval between fault self-recoveries	V/F SVC Set the waiting time between each inverter failure and recovery.	$\begin{gathered} 1.0 \mathrm{~s} \\ (0.0 \mathrm{~s} \sim 100.0 \mathrm{~s}) \end{gathered}$	STOP
$\begin{gathered} \text { F10.52 } \\ (0 \times 0 \mathrm{~A} 34) \end{gathered}$	Times of recovered faults	V/F SVC The times of self-recoveries that have been performed. This parameter is read-only.	0	STOP
$\begin{gathered} \text { F10.55 } \\ (0 \times 0 \mathrm{~A} 37) \end{gathered}$	Motor overload model	V/F SVC 0 : common motor 1: inverter motor $(50 \mathrm{~Hz})$ 2: inverter motor $(60 \mathrm{~Hz})$ 3: motor without cooling fan	$\begin{gathered} 0 \\ (0 \sim 3) \end{gathered}$	RUN
$\begin{gathered} \text { F10.56 } \\ (0 \times 0 \mathrm{~A} 38) \end{gathered}$	Motor insulation level	V/F SVC 0 : insulation level A; 1 : insulation level E 2: Insulation level B; 3: insulation level F 4: Insulation class H ; 5: special level S	$\begin{gathered} 3 \\ (0 \sim 5) \end{gathered}$	STOP

$\begin{gathered} \text { F10.57 } \\ (0 \times 0 \mathrm{~A} 39) \end{gathered}$	Motor working system	V/F SVC $0-1$: S1 working system (continuous working) 2: S2 working system 3-9: corresponds to S3-S9	$\begin{gathered} 0 \\ (0 \sim 9) \end{gathered}$	STOP
$\begin{gathered} \text { F10.58 } \\ (0 \times 0 \mathrm{~A} 3 \mathrm{~A}) \end{gathered}$	Motor overload threshold	V/F SVC Set motor overload threshold. The actual current is greater than accumulated excess load.	$\begin{gathered} 105.0 \% \\ (0.0 \% \sim 130.0 \%) \end{gathered}$	STOP
$\begin{gathered} \text { F10.59 } \\ (0 \times 0 \mathrm{~A} 3 \mathrm{~B}) \end{gathered}$	Motor overload current coefficient	V/F SVC Motor overload calculated current $=$ actual current * motor overload current coefficient.	$\begin{gathered} 100.0 \% \\ (0.0 \% \sim 250.0 \%) \end{gathered}$	STOP

Table 4-48 F10.5x group

4.15 F11 Group: Keyboard Parameter

F11.0x group: keyboard operation (external keyboard required)

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F11.00 } \\ (0 \times 0 \mathrm{~B} 00) \end{gathered}$	Key lock	V/F SVC 0 : lock off; 1: keyboard parameters changing function locked; 2: function parameters and the non-start \& stop key locked; 3: all function parameters and keys are locked;	$\begin{gathered} 0 \\ (0 \sim 3) \end{gathered}$	RUN
$\begin{gathered} \text { F11.01 } \\ (0 \times 0 \mathrm{~B} 01) \end{gathered}$	Key lock password	V/F SVC Function together with the key lock; Remember the password after setting, otherwise, the operation cannot be performed if it is locked.	$\begin{gathered} 0 \\ (0-65535) \end{gathered}$	RUN
$\begin{gathered} \text { F11.02 } \\ (0 \times 0 \mathrm{~B} 02) \end{gathered}$	Multi-function key selection	V/F SVC 0 : invalid; 1: reverse running; 2: forward jogging; 3: backward jogging; 4: switch between the keyboard command channel and the terminal command channel; 5: switch between the keyboard command channel and the communication command channel; 6: switch between the terminal command channel and the communication command channel; 7: switch between the keyboard, terminal, and communication command channel;	$\begin{gathered} 0 \\ (0 \sim 7) \end{gathered}$	STOP
$\begin{gathered} \text { F11.03 } \\ (0 \times 0 \mathrm{~B} 03) \end{gathered}$	Keyboard STOP key setting	V/F SVC 0: non-keyboard control invalid; 1: non-keyboard control stops as stop mode; 2: non-keyboard control stops as free mode;	$\begin{gathered} 0 \\ (0 \sim 2) \end{gathered}$	STOP
$\begin{gathered} \text { F11.04 } \\ (0 \times 0 \mathrm{~B} 04) \end{gathered}$	Up/down button on the status interface (knob) function selection	V/F SVC Ones-place; keyboard up \& down function selection 0 : invalid; 1: used to change the frequency of F 01.09 ; 2: used to adjust PID keyboard of F13.01; 3: keyboard up \& down keys to change the parameters; Tens-place: power failure storage 0 : off; 1: on; Hundreds-place: action limit 0 : adjustable both during running \& shutdown;	$\begin{gathered} 0011 \\ (0000-0213) \end{gathered}$	STOP

		1: adjustable during running and keeping during shutdown; 2: adjustable during running and clearing all after shutdown; Thousands-place: reserved		
F11.05	Up \& down key quick			
$(0 x 0 B 05)$	V/F SVC change parameter	Ones-place: set yy value from 00 to 99 among code "Fxx.yy"; Tens-place: set xxvalue from 00 to 15 among code "Fxx.yy"	0109 $(0000 \sim 2999)$	RUN

Table 4-49 F11.0x group
F11.1x group: status interface cycle monitoring

Parameter code (Address)	Designation	Content	\qquad	Adjustable attribute
$\begin{gathered} \text { F11.10 } \\ (0 \mathrm{x} 0 \mathrm{~B} 0 \mathrm{~A}) \end{gathered}$	Left \& right key on the status screen function selection	V/F SVC Ones-place: left key to adjust the first row; 0 : invalid; 1 : valid Tens-place: right key to adjust the second row; 0 : invalid; 1 : valid	$\begin{gathered} 0011 \\ (0000-0011) \end{gathered}$	STOP
$\begin{aligned} & \text { F11.11 } \\ & (0 \times 0 \mathrm{~B} 0 \mathrm{~B}) \end{aligned}$	Keyboard first line cycle- display parameter 1	V/F SVC Ones- \& tens-place: set yy from 00 to 63 among monitoring parameter Cxx.yy; Hundreds-\& Thousands-plac: set xx from 00 to 07 among monitoring parameter Cxx.yy;	$\begin{gathered} 0000 \\ (0000 \sim 0763) \end{gathered}$	RUN
$\begin{gathered} \text { F11.12 } \\ (0 \times 0 \mathrm{BOC}) \end{gathered}$	Keyboard first line cycle- display parameter 2	V/F SVC Ones- \& tens-place: set yy from 00 to 63 among monitoring parameter Cxx.yy; Hundreds-\& Thousands-plac: set xx from 00 to 07 among monitoring parameter Cxx.yy;	$\begin{gathered} 0001 \\ (0000-0763) \end{gathered}$	RUN
$\begin{gathered} \text { F11.13 } \\ (0 \times 0 \mathrm{~B} 0 \mathrm{D}) \end{gathered}$	Keyboard first line cycle- display parameter 3	V/F SVC Ones- \& tens-place: set yy from 00 to 63 among monitoring parameter Cxx.yy; Hundreds-\& Thousands-plac: set xx from 00 to 07 among monitoring parameter Cxx.yy;	$\begin{gathered} 0002 \\ (0000-0763) \end{gathered}$	RUN
$\begin{gathered} \text { F11.14 } \\ (0 x 0 \mathrm{~B} 0 \mathrm{E}) \end{gathered}$	Keyboard first line cycle- display parameter 4	V/F SVC Ones- \& tens-place: set yy from 00 to 63 among monitoring parameter Cxx.yy; Hundreds-\& Thousands-plac: set xx from 00 to 07 among monitoring parameter Cxx.yy;	$\begin{gathered} 0011 \\ (0000-0763) \end{gathered}$	RUN
$\begin{gathered} \text { F11.15 } \\ (0 \mathrm{x} 0 \mathrm{~B} 0 \mathrm{~F}) \end{gathered}$	Keyboard second line cycle- display parameter 1	V/F SVC Ones- \& tens-place: set yy from 00 to 63 among monitoring parameter Cxx.yy; Hundreds-\& Thousands-plac: set xx from 00 to 07 among monitoring parameter Cxx.yy;	$\begin{gathered} 0002 \\ (0000 \sim 0763) \end{gathered}$	RUN
$\begin{gathered} \text { F11.16 } \\ (0 \mathrm{x} 0 \mathrm{~B} 10) \end{gathered}$	Keyboard second line cycle- display parameter 2	V/F SVC Ones- \& tens-place: set yy from 00 to 63 among monitoring parameter Cxx.yy; Hundreds-\& Thousands-plac: set xx from 00 to 07 among monitoring parameter Cxx.yy;	$\begin{gathered} 0004 \\ (0000-0763) \end{gathered}$	RUN
$\begin{gathered} \text { F11.17 } \\ (0 \mathrm{x} 0 \mathrm{~B} 11) \end{gathered}$	Keyboard second line cycle- display parameter 3	V/F SVC Ones- \& tens-place: set yy from 00 to 63 among monitoring parameter Cxx.yy; Hundreds-\& Thousands-plac: set xx from 00 to 07 among monitoring parameter Cxx.yy;	$\begin{gathered} 0010 \\ (0000-0763) \end{gathered}$	RUN
$\begin{gathered} \text { F11.18 } \\ (0 \mathrm{x} 0 \mathrm{~B} 12) \end{gathered}$	Keyboard second line cycle- display parameter 4	V/F SVC Ones- \& tens-place: set yy from 00 to 63 among monitoring parameter Cxx.yy;	$\begin{gathered} 0012 \\ (0000-0763) \end{gathered}$	RUN

		Hundreds-\& Thousands-plac: set xx from 00 to 07 among monitoring parameter Cxx.yy;		

Table 4-50 F11.1x group

F11.2x group: monitoring parameter control

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F11.20 } \\ (0 \times 0 \mathrm{~B} 14) \end{gathered}$	Keyboard item display selection	Ones-place: input frequency display selection 0 : target frequency 1: running frequency $>=2$: running frequency, filtering depth increases with this value. Tens-place: reserved 0 : invalid 1: remove the active power of stator resistance loss Hundreds-place: power display dimension 0 : display percentage (\%) 1: display $\mathrm{kW}(\mathrm{kW})$ Thousands-place: reserved	$\begin{gathered} 0 \times 0002 \\ (0 \times 0000-0 \times 111 \mathrm{~F}) \end{gathered}$	RUN
$\begin{aligned} & \text { F11.21 } \\ & (0 \times 0 \mathrm{~B} 15) \end{aligned}$	Speed factor display	V/F SVC Set keyboard monitoring speed parameter factor ratio display.	$\begin{gathered} 100.0 \% \\ (0.0 \% \sim 500.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F11.22 } \\ (0 \times 0 \mathrm{~B} 16) \end{gathered}$	Power factor display	V/F SVC Set keyboard monitoring power parameter factor ratio display.	$\begin{gathered} 100.0 \% \\ (0.0 \%-500.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F11.23 } \\ (0 x 0 \mathrm{~B} 17) \end{gathered}$	Monitoring parameter group display selection	V/F SVC Ones-place: reserved 0 : invalid; 1: valid; Tens-place: C05 display selection 0 : Automatically switches with control modes 1: V/F mode related parameters; 2: V/C mode related parameters; Hundreds-place: C00.40-C00.63 display selection 0 : off; 1: on; Thousands-place: reserved	$\begin{gathered} 0 \times 0000 \\ \text { (0x0000~0xFFFF) } \end{gathered}$	RUN
$\begin{gathered} \text { F11.24 } \\ (0 x 0 \mathrm{~B} 18) \end{gathered}$	Monitoring parameter filtering selection	V/F SVC Ones- place: output current filtering displayed 0 to F : The larger the value, the deeper the filtering	$\begin{gathered} 0 \times 0002 \\ (0 \times 0000-0 \times 000 \mathrm{~F}) \end{gathered}$	RUN
$\begin{gathered} \text { F11.25 } \\ (0 x 0 \mathrm{~B} 19) \end{gathered}$	Motor self - learning display selection	V/F SVC 0 : status of the self-learning process displayed 1: status of the self-learning process not displayed Note: T/S2 models do not support this parameter.	$\begin{gathered} 0 \\ (0 \sim 1) \end{gathered}$	RUN
$\begin{aligned} & \text { F11.27 } \\ & (0 \times 0 \mathrm{~B} 1 \mathrm{~B}) \end{aligned}$	Fault display selection	Ones-place: The fault display during selfrecovery: 0 : off 1: on	$\begin{gathered} 0 \times 0001 \\ \text { (0x0000-0x0001) } \end{gathered}$	RUN

F11.3x group: keyboard special functions

	Designation	Content ${ }^{\text {a }}$ (set	Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F11.30 } \\ (0 \times 0 \mathrm{~B} 1 \mathrm{E}) \end{gathered}$	AC01 Serial port function select	V/F SVC 0: RS485 communication port; 1: external keyboard; Choose one of the two functions of the 485 bus and the external keyboard. If the external keyboard is valid and connected, the 485 bus (master/slave) remains invalid.	$\begin{gathered} 0 \\ (0 \sim 1) \end{gathered}$	STOP
$\begin{aligned} & \text { F11.31 } \\ & (0 x 0 \mathrm{~B} 1 \mathrm{~F}) \end{aligned}$	Keyboard potentiometer lower limit voltage	V/F SVC Define the keyboard potentiometer voltage lower limit, any value smaller than this value will still be taken as this one.	$\begin{gathered} 0.50 \mathrm{~V} \\ (0.00 \mathrm{~V} \sim 3.00 \mathrm{~V}) \end{gathered}$	RUN
$\begin{gathered} \text { F11.32 } \\ (0 x 0 \mathrm{~B} 20) \end{gathered}$	Keyboard potentiometer lower limit corresponding value	V/F SVC Set the input percentage of lower voltage limit of the keyboard potentiometer.	$\begin{gathered} 0.00 \% \\ (0.00 \% \sim 100.00 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F11.33 } \\ (0 \times 0 \mathrm{~B} 21) \end{gathered}$	Keyboard potentiometer upper limit voltage	V/F SVC Define the keyboard potentiometer upper voltage limit, any value bigger than this value will still be taken as this one.	$\begin{gathered} 2.80 \mathrm{~V} \\ (0.00 \mathrm{~V} \sim 3.00 \mathrm{~V}) \end{gathered}$	RUN
$\begin{gathered} \text { F11.34 } \\ (0 \times 0 \mathrm{~B} 22) \end{gathered}$	Keyboard potentiometer upper limit corresponding value	V/F SVC Set the input percentage of upper voltage limit of the keyboard potentiometer.	$\begin{gathered} 100.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F11.35 } \\ (0 x 0 \mathrm{~B} 23) \end{gathered}$	Keyboard potentiometer selection	V/F SVC Set the keyboard potentiometer channel 0 : built-in keyboard potentiometer effective; 1: external single-line display keyboard potentiometer effective	$\begin{gathered} 0 \\ (0 \sim 1) \end{gathered}$	STOP

Table 4-52 F11.3x group

4.16 F12 Group: Communication Parameter

(Note: The Modbus bus (master/slave) cannot be used when the external keyboard selected for F11.30 is valid and connected.)

F12.0x group : Modbus slave parameters

Parameter code (Address)	Designation	Content		Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F12.00 } \\ (0 \times 0 \mathrm{C} 00) \end{gathered}$	Master/slave selection	V/F SVC 0 : master 1: slave		$\begin{gathered} 0 \\ (0 \sim 1) \end{gathered}$	STOP
$\begin{gathered} \text { F12.01 } \\ (0 \times 0 \mathrm{C} 01) \end{gathered}$	Modbus communication address	V/F SVC Set the communication address of the Modbus slave computer.		$\begin{gathered} 1 \\ (1 \sim 247) \end{gathered}$	STOP
$\begin{gathered} \text { F12.02 } \\ (0 \times 0 \mathrm{C} 02) \end{gathered}$	Communication baud rate selection	V/F SVC 0:1200 bps 1:2400 bps 2:4800 bps	$\begin{aligned} & \text { 3:9600 } \mathrm{bps} \\ & \text { 4:19200 } \mathrm{bps} \\ & 5: 38400 \mathrm{bps} \\ & \text { 6:57600 } \mathrm{bps} \\ & \hline \end{aligned}$	$\begin{gathered} 3 \\ (0-6) \end{gathered}$	STOP
$\begin{gathered} \text { F12.03 } \\ (0 \times 0 \mathrm{C} 03) \end{gathered}$	Modbus communication data format	V/F SVC $0:(N, 8,1)$ No check, Data bit: 8 , Stop bit:1 1:(E, 8,1) Parity check, Data bit: :8,	3:($\mathrm{N}, 8,2$) No check, Data bit:8, Stop bit :2 4:(E, 8,2) Parity check, Data bit: :8, Stop bit :2 5:(O, 8,2) odd check,	$\begin{gathered} 0 \\ (0 \sim 5) \end{gathered}$	STOP

		Stop bit :1 2:(O, 8,1) odd check, Data bit :8, Stop bit:1	Data bit :8, Stop bit :2		
$\begin{gathered} \text { F12.04 } \\ (0 \times 0 \mathrm{C} 04) \end{gathered}$	Modbus communication transmission response processing	V/F SVC 0 : write operation valid 1: write operation inval		$\begin{gathered} 0 \\ (0 \sim 1) \end{gathered}$	RUN
$\begin{gathered} \text { F12.05 } \\ (0 \times 0 \mathrm{C} 05) \end{gathered}$	Modbus communication response delay	V/F SVC The time interval betwe replying to the master.	n receiving the data and	$\begin{gathered} 0 \mathrm{~ms} \\ (0 \mathrm{~ms} \sim 5000 \mathrm{~ms}) \end{gathered}$	RUN
$\begin{gathered} \text { F12.06 } \\ (0 \times 0 \mathrm{C} 06) \end{gathered}$	Modbus communication timeout failure time	V/F SVC interval time between two communication disconn	communication to tell ction.	$\begin{gathered} 1.0 \mathrm{~s} \\ (0.1 \mathrm{~s} \sim 100.0 \mathrm{~s}) \end{gathered}$	RUN
$\begin{gathered} \text { F12.07 } \\ (0 \times 0 \mathrm{C} 07) \end{gathered}$	Communication disconnection processing	V/F SVC 0 : timeout fault undetec 1: report fault and stop 2: report warning and go 3: forced stop	d; ely; on running;	$\begin{gathered} 0 \\ (0 \sim 3) \end{gathered}$	RUN
$\begin{gathered} \text { F12.08 } \\ (0 \times 0 \mathrm{C} 08) \end{gathered}$	Received data (address 0x3000) with zero bias	V/F SVC Set the bias value of the communication (100.00	et frequency of corresponding to 100.00 Hz)	$\begin{gathered} 0.00 \\ (-100.00 \sim 100.00) \end{gathered}$	RUN
$\begin{gathered} \text { F12.09 } \\ (0 \times 0 \mathrm{C} 09) \end{gathered}$	Receive data (address 0x3000) gain	V/F SVC Set the gain of commun Set frequency = actual value	ation at the set frequency communication \times gain + bias	$\begin{gathered} 100.0 \% \\ (0.0 \% \sim 500.0 \%) \end{gathered}$	RUN

Table 4-53 F12.0x group

F12.1x group : Modbus master parameters

Parameter code (Address)	Designation	Content		Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F12.10 } \\ (0 \mathrm{x} 0 \mathrm{C} 0 \mathrm{~A}) \end{gathered}$	Master loop-sending parameters selection	V/F SVC Ones-, tens-, hundreds-, thousands-place 0 : invalid; 1: running command; 2: set frequency; 3: output frequency; 4: upper limit frequency; 5: set torque ;	6: output torque; 7: reserved 8: reserved 9: PID setting A: PID feedback; B: reserved; C: Active current component;	$\begin{gathered} 0 \times 0031 \\ (0 \mathrm{x} 0000 \sim 0 \mathrm{xCCCC}) \end{gathered}$	RUN
$\begin{gathered} \text { F12.11 } \\ (0 \times 0 \mathrm{C} 0 \mathrm{~B}) \end{gathered}$	Self-defined frequency address	V/F SVC Set this parameter to nonaddress of 0×3000 or 0×2 communication port.	lace of frequency t via	$\begin{gathered} 0 \times 0000 \\ (0 x 0000 \sim 0 x F F F F) \end{gathered}$	RUN
$\begin{gathered} \text { F12.12 } \\ (0 \mathrm{x} 0 \mathrm{C} 0 \mathrm{C}) \end{gathered}$	Self-defined command address	V/F SVC Set this parameter to nonaddress of 0×3001 or 0×2 communication port.	lace of command t via	$\begin{gathered} 0 \times 0000 \\ (0 \times 0000 \sim 0 x F F F F) \end{gathered}$	RUN
$\begin{gathered} \text { F12.13 } \\ (0 \mathrm{x} 0 \mathrm{C} 0 \mathrm{D}) \end{gathered}$	Forward running command value setting	V/F SVC Set this parameter in place running set via communic	01H forward port.	$\begin{gathered} 0 \times 0001 \\ (0 \times 0000 \sim 0 \times F F F F) \end{gathered}$	RUN

$\begin{gathered} \text { F12.14 } \\ (0 x 0 C 0 E) \end{gathered}$	Backward running command value setting	V/F SVC Set this parameter in place of 0002 H backward running set via communication port.	$\begin{gathered} 0 \times 0002 \\ (0 \times 0000 \sim 0 \mathrm{xFFFF}) \end{gathered}$	RUN
$\begin{gathered} \text { F12.15 } \\ (0 \mathrm{x} 0 \mathrm{C} 0 \mathrm{~F}) \end{gathered}$	Stop command value	V/F SVC Set this parameter in place of 0005 H deceleration stop set via communication port.	$\begin{gathered} 0 \times 0005 \\ (0 \times 0000 \sim 0 x F F F F) \end{gathered}$	RUN
$\begin{gathered} \text { F12.16 } \\ (0 \mathrm{x} 0 \mathrm{C} 10) \end{gathered}$	Reset command value	V/F SVC Set this parameter in place of 0007 H fault recovery set via communication port.	$\begin{gathered} 0 \times 0007 \\ (0 \times 0000 \sim 0 \mathrm{xFFFF}) \end{gathered}$	RUN
$\begin{gathered} \text { F12.19 } \\ (0 \mathrm{x} 0 \mathrm{C} 13) \end{gathered}$	Master sending command selection	V/F SVC Master sending command selection 0 : sending the running command 1: sends the rumning status	$\begin{gathered} 0 \\ (0 \sim 1) \end{gathered}$	RUN

Table 4-54 F12.1x group

4.17 F13 Group: PID Control

F13.00~F13.06:PID setting and feedback

Parameter code (Address)	Designation	Content		Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F13.00 } \\ (0 \times 0 \mathrm{D} 00) \end{gathered}$	PID controller signal source setting	V/F SVC 0 : via keyboard number setting; 1: via keyboard potentiometer; 2: via current analog quantity AS; 3: via voltage analog quantity VS;	4: reserved 5: reserved 6: via RS485 communication port; 7: reserved 8: via terminal selection; 9: via active current of communication	$\begin{gathered} 0 \\ (0 \sim 9) \end{gathered}$	RUN
$\begin{gathered} \text { F13.01 } \\ (0 \times 0 \mathrm{D} 01) \end{gathered}$	PID setting/feedback via keyboard number entering	V/F SVC The parameter is valid when [F13.00] or [F13.03] is selected with "PID setting/feedback via keyboard number entering".		$\begin{gathered} 50.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F13.02 } \\ (0 x 0 \mathrm{D} 02) \end{gathered}$	PID time	V/F SVC Set PID time needed from 0.0% to 100%.		$\begin{gathered} 1.00 \mathrm{~s} \\ (0.00 \mathrm{~s}-60.00 \mathrm{~s}) \\ \hline \end{gathered}$	RUN
$\begin{gathered} \text { F13.03 } \\ \text { (0x0D03) } \end{gathered}$	PID controller feedback signal source setting	V/F SVC 0: via keyboard number setting; 1: via keyboard potentiometer; 2: via current analog quantity AS ; 3: via voltage analog quantity VS; 4: reserved	5: reserved 6: via RS485 communication port; 7: reserved 8: via terminal selection; 9: via local active current;	$\begin{gathered} 2 \\ (0 \sim 9) \end{gathered}$	RUN
$\begin{gathered} \text { F13.04 } \\ (0 \times 0 \mathrm{D} 04) \end{gathered}$	Feedback signal lowpass filter time	V/F SVC The longer the filter time, the interference, and the slower the	ronger the antireaction.	$\begin{gathered} 0.010 \mathrm{~s} \\ (0.000 \mathrm{~s} \sim 6.000 \mathrm{~s}) \end{gathered}$	RUN
$\begin{gathered} \text { F13.05 } \\ (0 \times 0 \mathrm{D} 05) \end{gathered}$	Feedback signal gain	V/F SVC Used for linear proportional input signal.	modulation of feedback	$\begin{gathered} 1.00 \\ (0.00 \sim 10.00) \end{gathered}$	RUN

F13.06 $(0 x 0$ 06 $)$	Feedback signal range	V/F SVC PID feedback signal range is a dimensionless unit used to adjust PID feedback.	100.0 $(0.0 \sim 100.0)$	RUN

Table 4-55 F13.00~F13.06
F13.07~F13.24:PID modulation

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F13.07 } \\ (0 \times 0 \mathrm{D} 07) \end{gathered}$	PID control selection	V/F SVC Ones- place: feedback characteristic selection 0 : positive characteristic; 1: negative characteristic Tens-place: reserved Hundreds-place: reserved Thousands-place: differential regulation characteristics 0 : differentiates the deviation 1: differentiate the feedback	$\begin{gathered} 0100 \\ (0000 \sim 1111) \end{gathered}$	RUN
$\begin{gathered} \text { F13.08 } \\ (0 \times 0 \mathrm{D} 08) \end{gathered}$	PID preset output	V/F SVC Output as PID preset value after PID starts.	$\begin{gathered} 100.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F13.09 } \\ (0 \times 0 \mathrm{D} 09) \end{gathered}$	PID preset output time	V/F SVC Set PID preset output time and set output starts after countdown.	$\begin{gathered} 0.0 \mathrm{~s} \\ (0.0 \mathrm{~s}-6500.0 \mathrm{~s}) \end{gathered}$	RUN
$\begin{aligned} & \text { F13.10 } \\ & (0 \mathrm{x} 0 \mathrm{D} 0 \mathrm{~A}) \end{aligned}$	PID deviation limit	V/F SVC Set maximum deviation between PID feedback and PID set	$\begin{gathered} 0.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F13.11 } \\ (0 \times 0 \mathrm{DOB}) \end{gathered}$	Proportional gain P1	V/F SVC Set PID parameter group 1 proportional gain.	$\begin{gathered} 0.100 \\ (0.000-4.000) \end{gathered}$	RUN
$\begin{gathered} \text { F13.12 } \\ (0 \times 0 \mathrm{DOC}) \end{gathered}$	Integral time I1	V/F SVC Set PID parameter group 1 integral time.	$\begin{gathered} 1.0 \mathrm{~s} \\ (0.0 \mathrm{~s}-600.0 \mathrm{~s}) \end{gathered}$	RUN
$\begin{gathered} \text { F13.13 } \\ \text { (0x0D0D) } \end{gathered}$	Rate time D1	V/F SVC Set PID parameter group 1 rate time.	$\begin{gathered} 0.000 \mathrm{~s} \\ (0.000 \mathrm{~s} \sim 6.000 \mathrm{~s}) \end{gathered}$	RUN
$\begin{gathered} \text { F13.14 } \\ (0 \times 0 \mathrm{D} 0 \mathrm{E}) \end{gathered}$	Proportional gain P1	V/F SVC Set PID parameter group 2 proportional gain.	$\begin{gathered} 0.100 \\ (0.000-4.000) \end{gathered}$	RUN
$\begin{gathered} \text { F13.15 } \\ (0 \times 0 \mathrm{D} 0 \mathrm{~F}) \\ \hline \end{gathered}$	Integral time I2	V/F SVC Set PID parameter group 2 integral time.	$\begin{gathered} 1.0 \mathrm{~s} \\ (0.0 \mathrm{~s}-600.0 \mathrm{~s}) \end{gathered}$	RUN
$\begin{gathered} \text { F13.16 } \\ (0 \times 0 \mathrm{D} 10) \end{gathered}$	Rate time D2	V/F SVC Set PID parameter group 2 rate time.	$\begin{gathered} 0.000 \mathrm{~s} \\ (0.000 \mathrm{~s}-6.000 \mathrm{~s}) \end{gathered}$	RUN
$\begin{aligned} & \text { F13.17 } \\ & (0 \times 0 \mathrm{D} 11) \end{aligned}$	PID parameter switching condition	V/F SVC 0 : off; 1: switch via DI terminal; 2: switch according to deviation;	$\begin{gathered} 0 \\ (0 \sim 2) \end{gathered}$	RUN
$\begin{gathered} \text { F13.18 } \\ (0 x 0 \mathrm{D} 12) \end{gathered}$	Set lower deviation value	V/F SVC Apply the gain 1 parameter when the PID deviation is smaller than this value.	$\begin{gathered} 20.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F13.19 } \\ (0 \times 0 \mathrm{D} 13) \end{gathered}$	Set higher deviation value	V/F SVC Apply the gain 1 parameter when the PID deviation is larger than this value.	$\begin{gathered} 80.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F13.21 } \\ (0 \times 0 \mathrm{D} 15) \end{gathered}$	Differential limit	V/F SVC Differential limit is used to set the range of PID differential output.	$\begin{gathered} 5.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F13.22 } \\ (0 \times 0 \mathrm{D} 16) \end{gathered}$	PID upper limit output	V/F SVC Set the upper limit of PID output.	$\begin{gathered} 100.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F13.23 } \\ (0 \times 0 \mathrm{D} 17) \end{gathered}$	PID lower limit output	V/F SVC Set the lower limit of PID output.	$\begin{gathered} 0.0 \% \\ (-100.0 \% \sim \mathrm{~F} 13.22) \end{gathered}$	RUN

F13.24 $(0 x 0 D 18)$	PID output filter time	V/F SVC Set the filter time for PID output.	0.000 s $(0.000 \mathrm{~s} \sim 6.000 \mathrm{~s})$	RUN

Table 4-56 F13.07~F13.24
F13.25~F13.28:PID Feedback disconnection

Parameter code	Designation	Content	Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F13.25 } \\ (0 \times 0 \mathrm{D} 19) \end{gathered}$	Action selection of PID disconnection	V/F SVC 0 : PID continues running and no fault is reported; 1: PID stops running and fault is reported; 2: PID continues running and sends output warning signal; 3: PID continues running at the current frequency and sends output warning signal;	$\begin{gathered} 0 \\ (0 \sim 3) \end{gathered}$	STOP
$\begin{gathered} \text { F13.26 } \\ (0 x 0 \mathrm{D} 1 \mathrm{~A}) \\ \hline \end{gathered}$	Detection time of PID disconnection	$\begin{array}{ll} \hline \mathrm{V} / \mathrm{F} & \mathrm{SVC} \end{array}$ Set detection time of PID disconnection diagnosis.	$\begin{gathered} 1.0 \mathrm{~s} \\ (0.0 \mathrm{~s} \sim 120.0 \mathrm{~s}) \end{gathered}$	RUN
$\begin{gathered} \text { F13.27 } \\ (0 \mathrm{x} 0 \mathrm{D} 1 \mathrm{~B}) \end{gathered}$	Upper limit of disconnection warning	V/F SVC If the feedback signal exceeds this value and persists for [F13.26], the sensor is considered disconnected	$\begin{gathered} 100.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	RUN
$\begin{gathered} \text { F13.28 } \\ (0 \mathrm{x} 0 \mathrm{D} 1 \mathrm{C}) \end{gathered}$	Lower limit of disconnection warning	V/F SVC If the feedback signal is lower than this value and persists for [F13.26], the sensor is considered disconnected	$\begin{gathered} 0.0 \% \\ (0.0 \% \sim 100.0 \%) \end{gathered}$	RUN

Table 4-57 F13.25~F13.28

F13.29~F13.33:PID sleep mode

Parameter code	Designation	Content	Factory default (setting range)	Adjustable attribute
$\begin{gathered} \text { F13.29 } \\ \text { (0x0D1D) } \end{gathered}$	Sleep selection	$\begin{aligned} & \text { V/F SVC } \\ & \text { 0: off; } \\ & \text { 1: on } \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ (0 \sim 1) \end{gathered}$	RUN
$\begin{gathered} \text { F13.30 } \\ (0 \times 0 \mathrm{D} 1 \mathrm{E}) \end{gathered}$	Sleep frequency	V/F SVC When the sleep function is effective, PID output frequency is lower than [F13.30] and last for sleep delay of [F13.31], then starts the sleep mode.	$\begin{gathered} \hline 10.00 \mathrm{~Hz} \\ (0.00 \mathrm{~Hz} \sim \text { max. } \\ \text { frequency }) \\ \hline \end{gathered}$	RUN
$\begin{gathered} \text { F13.31 } \\ \text { (0x0D1F) } \\ \hline \end{gathered}$	Sleep delay		$\begin{gathered} 60.0 \mathrm{~s} \\ (0.0 \mathrm{~s} \sim 3600.0 \mathrm{~s}) \\ \hline \end{gathered}$	RUN
$\begin{gathered} \hline \text { F13.32 } \\ (0 x 0 \mathrm{D} 20) \end{gathered}$	Wakeup deviation	V/F SVC PID feedback is lower than/greater than (positive characteristic/negative characteristic) PID minus/plus (positive characteristic/negative characteristic) wakeup deviation [F13.32] and lasts for wakeup delay [F13.33], sleep mode ends and running is resumed.	$\begin{gathered} 5.0 \% \\ (0.0 \% \sim 50.0 \%) \\ \hline \end{gathered}$	RUN
$\begin{gathered} \text { F13.33 } \\ (0 \times 0 \mathrm{D} 21) \end{gathered}$	Wakeup delay		$\begin{gathered} 1.0 \mathrm{~s} \\ (0.0 \mathrm{~s}-60.0 \mathrm{~s}) \end{gathered}$	RUN

Table 4-58 F13.29~F13.33

4.18 F14 Group: Multi-speed and Simple PLC

F14.00~F14.14: multi-speed frequency setting

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute

$\begin{gathered} \text { F14.00 } \\ (0 \times 0 \mathrm{E} 00) \\ \sim \\ \text { F14.14 } \\ (0 \times 0 \mathrm{E} 0 \mathrm{E}) \end{gathered}$	PLC multispeed 1~15 setting	V/F SVC [F01.02] frequency source channel is 9: program control (PLC) setting. Frequency and running direction of inverter is controlled by PLC with up to 15 stages speed; See Setting [F14.15] for running mode. If one stage of speed time is set to " 0 ", the program will skip that speed. [F01.02] frequency source channel is 11: multi-speed setting. Frequency is set via "multi-speed terminal". Running direction, acceleration \& deceleration time are [F14.31~F14.45] respectively. If multi-speed terminals are invalid, multi-speed is set to 0 ."multispeed terminal" parameters see [F5.00~F5.03]. Default values are set as follows: F14.00 multi-speed $1=10.00 \mathrm{~Hz} ;$ F14.08 multi-speed9 $=10.00 \mathrm{~Hz}$ F14.01 multi-speed2 $=20.00 \mathrm{~Hz} ;$ F14.09 multi-speed $10=20.00 \mathrm{~Hz}$ F14.02 multi-speed3 $=30.00 \mathrm{~Hz} ;$ F14.10 multi-speed $11=30.00 \mathrm{~Hz}$ F14.03 multi-speed $4=40.00 \mathrm{~Hz} ;$ F14.11 multi-speed $12=40.00 \mathrm{~Hz}$ F14.04 multi-speed $5=50.00 \mathrm{~Hz} ;$ F14.12 multi-speed $13=50.00 \mathrm{~Hz}$ F14.05 multi-speed6 $=40.00 \mathrm{~Hz} ;$ F14.13 multi-speed $14=40.00 \mathrm{~Hz}$ F14.06 multi-speed $7=30.00 \mathrm{~Hz} ;$ F14.14 multi-speed $15=30.00 \mathrm{~Hz}$ F14.07 multi-speed8 $=20.00 \mathrm{~Hz}$;	See description on the left $(0.00 \mathrm{~Hz} \sim$ maximum frequency)	RUN

Table 4-59 F14.00-F14.14

F14.15: PLC running mode selection

$\begin{gathered} \text { Parameter } \\ \text { code } \end{gathered}$	Designation	Content		Factory default (setting range)	Adjust able
$\begin{gathered} \text { F14.15 } \\ (0 \times 0 \mathrm{E} 0 \mathrm{~F}) \end{gathered}$	PLC running mode selection	V/F SVC Ones-place: cycle mode 0 : stops after a single cycle; 1: continues with cycles; 2: keep the final value after a single cycle; Tens-place: timing unit 0 : second (s); 1: minute (m); 2: hour (h);	Hundreds-place: power failure storage mode 0 : off; 1: on; Thousands-place: start mode 0 : restart from stage 1 ; 1: restart the interrupted stage all over again; 2: restart the interrupted stage for the remaining time;	$\begin{gathered} 0000 \\ (0000 \sim 2122) \end{gathered}$	RUN

Table 4-60 F14.15

F14.16~F14.30:PLC running time selection

Parameter code	Designation	Content	Factory default (setting range)	Adjust able
F14.16 (0x0E10) F14.30 (0x0E1E)	PLC 1st~15th stage speed running time	V/F SVC Set PLC running time for 1st \sim 15th stage speed	$\begin{gathered} 10.0(\mathrm{~s} / \mathrm{m} / \mathrm{h}) \\ (0.0(\mathrm{~s} / \mathrm{m} / \mathrm{h}) \\ \sim 6500.0(\mathrm{~s} / \mathrm{m} / \mathrm{h})) \end{gathered}$	RUN

Table 4-61 F14.16 ~ F14.30

F14.31~F14.45:PLC running direction and time selection

Parameter code	Designation	Content	Factory default (setting range)	Adjust able

$\begin{gathered} \text { F14.31 } \\ (0 \mathrm{x} 0 \mathrm{E} 1 \mathrm{~F}) \\ \sim \\ \text { F14.45 } \\ (0 \times 0 \mathrm{E} 2 \mathrm{D}) \end{gathered}$	PLC 1st ~ 15th stage speed running directions and acceleration \& deceleration time	V/F SVC Ones-place: running direction of this stage (compared with running command) 0 : in the same direction; 1: in the opposite direction Tens-place: acceleration and deceleration time of this stage 0 : acceleration and deceleration time 1 ; 1: acceleration and deceleration time 2; 2: acceleration and deceleration time 3; 3: acceleration and deceleration time 4; Hundreds-place: reserved Thousands-place: reserved	$\begin{gathered} 0000 \\ (0000 \sim 0031) \end{gathered}$	RUN

Table 4-62 F14.31~F14.45

4.19 F15 Group: Reserved

4.20 F25 Group: AS/VS Correction

Please refer to the corresponding technical manual for detailed introduction of the function codes and description of this group.

4.21 C0x Group: Monitoring Parameter

C00.xx group : basic monitoring

Parameter code (Address)	Designation	Content	Factory default (setting range)	Adjustable attribute	Parameter code (Address)
C00.00 (0x2100)	set frequency	C00.14 (0x210E)	input terminal X connection status	C00.28 (0x211C)	software version
C00.01 (0x2101)	output frequency	C00.15 (0x210F)	input terminal Y connection status	C00.29 (0x211D)	reserved
$\begin{gathered} \mathrm{C} 00.02 \\ (0 \times 2102) \end{gathered}$	output current	C00.16(0x2110)	simulated quantity AS input value	C00.30 (0x211E)	timer dieoutTime
C00.03 (0x2103)	input voltage	C00.17 (0x2111)	simulated quantity VS input value	C00.31 (0x211F)	PID output value
C00.04 (0x2104)	output voltage	C00.18 (0x2112)	keyboard potentiometer input value	C00.32 (0x2120)	inverter software subversion
C00.05 (0x2105)	machinery speed	C00.19 (0x2113)	reserved	C00.33(0x2121)	reserved
C00.06 (0x2106)	set torque	C00.20 (0x2114)	reserved	C 00.34 (0x2122)	reserved
C00.07 (0x2107)	output torque	C00.21 (0x2115)	reserved	C00.35 (0x2123)	reserved
C00.08 (0x2108)	PID set quantity	C00.22 (0x2116)	counter value	C00.36 (0x2124)	fault warning code
C00.09 (0x2109)	PID feedback qty.	C00.23 (0x2117)	run time	C00.37 (0x2125)	cumulative electricity consumption (low)
C00.10 (0x210A)	output power	C00.24 (0x2118)	accumulative run time	C00.38 (0x2126)	cumulative electricity consumption (high)
C00.11 (0x210B)	busbar voltage	C00.25 (0x2119)	inverter power level	C00.39 (0x2127)	power factor angle
C00.12 (0x210C)	module temperature 1	C00.26 (0x211A)	inverter rated voltage		
C00.13 (0x210D)	module temperature 2	C00.27 (0x211B)	inverter rated current		

Table 4-63 C00.xx group

C01.xx group: fault monitoring

Parameter code (Address)	Designation	Parameter code (Address)	Designation	Parameter code (Address)	Designation

C01.00 (0x2200)	fault type diagnosis information	C01.08 (0x2208)	fault input terminal status	C01.16 (0x2210)	module temperature of last fault
C01.01 (0x2201)	fault diagnosis information	C01.09 (0x2209)	fault output terminal status	C01.17 (0x2211)	inverter status of last fault
C01.02 (0x2202)	fault running frequency	C01.10 (0x220A)	last fault type	C01.18 (0x2212)	input terminal status of last fault
C01.03 (0x2203)	fault output voltage	C01.11 (0x220B)	diagnosis information of last fault	C01.19 (0x2213)	fault type of last 2 faults
C01.04 (0x2204)	fault output current	C01.12 (0x220C)	running frequency of last fault	C01.20 (0x2214)	diagnosis information of last 2 faults
C01.05 (0x2205)	fault bus voltage	C01.13 (0x220D)	output voltage of last fault	C01.21 (0x2215)	diagnosis information of last 2 faults
C01.06 (0x2206)	fault module temperature	C01.14 (0x220E)	output current of last fault	C01.22 (0x2216)	fault type of last 3 faults
C01.07 (0x2207)	fault inverter status	C01.15 (0x220F)	bus voltage of last fault	C01.23 (0x2217)	diagnosis information of last 3 faults

Table 4-64 C01.xx group
Note: fault inverter status means:

- ones-place: running direction 0 : forward; 1 : backward
- tens-place: running state 0 : stop; 1 : at steady speed; 2 : acceleration; 3 : deceleration
- hundreds-place: overvoltage and overcurrent 0 : normal; 1 : overvoltage ; 2 : overcurrent; 3 : overvoltage and overcurrent
- thousands-place: reserved

C02.xx group: application monitoring

Parameter code (Address)	Designation	Parameter code (Address)	Designation
C02.00 (0x2300)	PID setting	$\begin{aligned} & \mathrm{C} 02.13(0 \times 230 \mathrm{D}) \sim \\ & \mathrm{C} 02.14(0 \times 230 \mathrm{E}) \end{aligned}$	reserved
C02.01 (0x2301)	PID feedback	C02.15 (0x230F)	inverter overload timing factor
C02.02 (0x2302)	PID output	C02.16 (0x2310)	inverter overload timing factor
C02.03 (0x2303)	PID control status	$\begin{aligned} & \mathrm{C} 02.17(0 \times 2311) ~ \\ & \mathrm{C} 02.18(0 \times 2312) \end{aligned}$	reserved
C02.05 (0x2305)	PLC running stage	C02.19 (0x2313)	number of current limiting per wave
C02.06 (0x2306)	PLC stage frequency	$\begin{aligned} & \text { C02.20 (0x2314)~ } \\ & \text { C02.31 (0x231F) } \end{aligned}$	reserved
C02.07 (0x2307)	PLC stage run time	$\begin{aligned} & \mathrm{C} 02.32(0 \times 2320) \sim \\ & \mathrm{C} 02.47(0 \times 232 \mathrm{~F}) \end{aligned}$	power-off storage parameter 1~ power-off storage parameter 16
C02.08 (0x2308)	forward \& reverse command setting	$\begin{aligned} & \mathrm{C} 02.48(0 \times 2330) \sim \\ & \mathrm{C} 02.49(0 \times 2331) \end{aligned}$	reserved
C02.09 (0x2309)	jogging command setting	$\begin{aligned} & \text { C02.50 (0x2332)~ } \\ & \text { C02.59 (0x233B) } \end{aligned}$	cache register 0 to cache register 9
C02.10 (0x230A)	AS current before correction	$\begin{aligned} & \text { C02.60 (0x233C)~ } \\ & \text { C02.61 (0x233D) } \end{aligned}$	reserved
C02.11 (0x230B)	VS voltage before correction	C02.62 (0x233E)	external keyboard version
C02.12 (0x230C)	reserved		

Table 4-65 C02.xx group

C03.xx: maintenance parameter monitoring

Parameter code (Address)	Designation	Parameter code (Address)	Designation
$\mathrm{C} 03.00(0 \times 2400)$	run time	$\mathrm{C} 03.23(0 \times 2417)$	reserved

$\mathrm{C} 03.01(0 \times 2401)$	accumulative run time(h)	$\mathrm{C} 03.24(0 \times 2418)$	reserved
$\mathrm{C} 03.02(0 \times 2402)$	accumulative power-on time(h)	$\mathrm{C} 03.25(0 \times 2419)$	reserved
$\mathrm{C} 03.03(0 \times 2403)$	accumulative power-on time(m)	$\mathrm{C} 03.26(0 \times 241 \mathrm{~A})$	reserved
$\mathrm{C} 03.04(0 \times 2404)$	cooling fan run time	$\mathrm{C} 03.27(0 \times 241 \mathrm{~B})$	reserved
$\mathrm{C} 03.05(0 \times 2405)$	cooling fan maintenance	$\mathrm{C} 03.28(0 \times 241 \mathrm{C})$	reserved
$\mathrm{C} 03.06(0 \times 2406)$	reserved	$\mathrm{C} 03.29(0 \times 241 \mathrm{D})$	reserved
$\mathrm{C} 03.07(0 \times 2407)$	Main relay maintenance	$\mathrm{C} 03.30(0 \times 241 \mathrm{E})$	reserved
$\mathrm{C} 03.08(0 \times 2408) \sim$			
$\mathrm{C} 03.19(0 \times 2413)$	reserved	$\mathrm{C} 03.31(0 \times 241 \mathrm{~F}) \sim$	
$\mathrm{C} 03.20(0 \times 2414)$	reserved	$\mathrm{C} 03.39(0 \times 2427)$	reserved
$\mathrm{C} 03.21(0 \times 2415)$	reserved	$\mathrm{C} 03.51(0 \times 2433)$	machine code 1
$\mathrm{C} 03.22(0 \times 2416)$	reserved	$\mathrm{C} 03.52(0 \times 2434)$	machine code 2

Table 4-66 C03.xx group

4.22 Input \& Output Terminal Functions Selection

X	Functional definition	X	Functional definition	X	Functional definition
0	null	24	PID switch 1	48	command channel switched to keyboard
1	forward running	25	PID switch 2	49	command channel switched to terminal
2	backward running	26	PID switch 3	50	command channel switched to communication
3	three-wire system control (xi)	27	PID feedback switch 1	51	reserved
4	forward jogging	28	PID feedback switch 2	52	operation prohibited
5	backward jogging	29	PID feedback switch 3	53	forward prohibited
6	free stop	30	program operation (PLC)	54	backward prohibited
7	emergency stop	31	program operation (PLC)	55	reserved
8	fault recovery	32	terminal 1 acceleration \& deceleration time selection	56	reserved
9	external fault input	33	terminal 2 acceleration \& deceleration time selection	57	reserved
10	frequency progressive increase (up)	34	acceleration \& deceleration	58	reserved
11	frequency progressive decrease (dw)	35	swing frequency input	59	reserved
12	frequency increasing \& decreasing clearance (up/dw zero clearing)	36	swing frequency pause	60	speed torque control switch
13	channel a switched to channel b	37	swing frequency reset	62	jogging frequency as upper limit frequency of torque mode
14	frequency channel combination switches to a	38	keys \& self - inspection display selection	63~87	reserved
15	frequency channel combination switches to b	39	reserved	88	reserved
16	multi-speed terminal 1	40	timer triggered terminal	89	reserved
17	multi-speed terminal 2	41	timer clearing terminal	90	reserved
18	multi-speed terminal 3	42	counter clock input terminal	91	reserved
19	multi-speed terminal 4	43	counter clearing terminal	92	reserved
20	PID control off	44	DC brake command	93	reserved
21	PID control pause	45	pre-excitation command	94	reserved
22	PID characteristic switch	46	reserved	95	reserved
23	PID parameter switch	47	reserved		

Y	Functional definition	Y	Functional definition	Y	Functional definition
0	null	13	upper frequency arrival	26	emergency stop now
1	inverter in motion	14	lower frequency arrival	27	overload warning output 1
2	inverter backward running	15	program run cycle completed	28	underload warning output 2
3	inverter forward running	16	program run stage completed	29	inverter warning
4	fault trip warning 1 (warning during fault self-recovery)	17	PID feedback over limit	30	$\begin{gathered} 0 \times 3018 \\ \text { control output } \end{gathered}$
5	fault trip warning 2 (no warning during fault self-recovery)	18	PID feedback below limit	31	inverter overheating warning
6	external failure shutdown	19	PID feedback sensor disconnected	32	reserved
7	inverter undervoltage	20	reserved	33~36	reserved
8	inverter ready for operation	21	timer time out	37	comparator 1 detection
9	output frequency level detection 1(FDT1)	22	counter maximum value arrival	38	comparator 2 detection
10	output frequency level detection 2 (FDT 2)	23	counter set value arrival	39~63	reserved
11	set frequency arrival	24	energy consumption braking	-	-
12	running at zero speed	25	reserved	-	-

Table 4-67 Input \& output terminal functions selection

4.23 Fault Code Table

Note:

1. Refer to the relevant instructions on page 9 of this manual for inverter fault/operation status information.
2.The numbers in the code column in brackets are fault codes OR warning codes (Dec means decimal), the following codes need to be obtained from the external keyboard OR by reading the inverter address 0x3003/0x3010 information through communication.

Display (DEC.)	Fault	Type	Display (DEC.)	Fault	Type
E. $\mathrm{SC} 1(1)$	system fault during acceleration	fault	E. Ld2(80)	load protection 2	fault
E. SC2(2)	system fault during deceleration	fault	E. $\mathrm{CPu}(81)$	CPU timeout failure	fault
E. SC3(3)	system fault during constant speed	fault	Reserved (8284)	reserved	fault
E. SC4(4)	shutdown system fault	fault	E. LoC (85)	chip lock	fault
E. $\mathrm{oCl} 1(5)$	overcurrent during acceleration	fault	E. EEP (86)	parameter storage failure	fault
E. oC2(6)	overcurrent during deceleration	fault	Reserved (8796)	reserved	fault
E. oC3(7)	overcurrent during constant speed	fault	E. CP1(97)	monitor comparison output 1 failure	fault
E. oC4(8)	AC01 software overcurrent	fault	E. CP2(98)	monitor comparison output 2 failure	fault
E. oul(9)	overvoltage during acceleration	fault	E. dAT (99)	parameter setting failure	fault
E. ou2(10)	overvoltage during deceleration	fault	$\begin{gathered} \text { reserved } \\ (100 \sim 109) \end{gathered}$	reserved	fault
E. ou3(11)	overvoltage during constant speed	fault	E. FAl(110)	external extension reserved 1	fault
Reserved (12)	reserved	fault	E. FA2(111)	external extension reserved 2	fault
E. Lu (13)	undervoltage during operation	fault	E. FA3(112)	external extension reserved 3	fault
E. oL1(14)	motor overload	fault	E. FA4(113)	external extension reserved 4	fault
E. oL2(15)	inverter overload 1	fault	E. FA5(114)	external extension reserved 5	fault
E. oL3(16)	inverter overload 2	fault	E. FA6(115)	external extension reserved 6	fault
E. oL4(17)	inverter overload 3	fault	E. FA7(116)	external extension reserved 7	fault

E. iLF (18)	input phase loss	fault	E. FA8(117)	external extension reserved 8	fault
E. oLF (19)	three-phase output phase loss	fault			
E. oLF1(20)	U-phase output phase \qquad	fault	Here are the warnings		
E. oLF2(21)	V-phase output phase loss	fault	A. Lu1(128)	undervoltage shutdown	warning
E. oLF3(22)	W-phase output phase \qquad	fault	A. ou (129)	overvoltage shutdown	warning
Reserved (23-29)	reserved	fault	A. iLF (130)	input phase loss	warning
E. oH1(30)	rectifier overheat	fault	A. PID (131)	PID feedback disconnection	warning
E. $\mathrm{oH} 2(31)$	inverter overheat	fault	A. EEP (132)	parameter storage warning	warning
Reserved (32)	reserved	fault	A. dEF (133)	excessive speed deviation	
E. EF (33)	external fault	fault	A. SPd (134)	Stall warning	warning
E. CE (34)	Modbus communication fault	fault	A. GPS1(135)	GPS lock	warning
E. HAL1(35)	U-phase excessive zero drift	fault	A. GPS2(136)	GPS disconnection	warning
E. HAL2(36)	V-phase excessive zero drift	fault	A. CE (137)	Modbus disconnection warning	warning
E. HAL (37)	non-zero sum of three phase currents	fault	A. Ld1(138)	load protection 1	warning
E. HAL3(38)	W-phase excessive zero drift	fault	A. Ld2(139)	load protection 2	warning
Reserved (39)	reserved	fault	Reserved (140)	reserved	warning
E. SGxx (40)	ground short circuit	fault	A. oH1(141)	Module overheat warning	warning
E. FSG (41)	fan short circuit	fault	Reserved (142)	reserved	warning
E. PID (42)	PID feedback disconnection	fault	A. run1(143)	warning 1 in motion	warning
E. $\mathrm{CoP}(43)$	parameter copy failure	fault	A. PA2(144)	external keyboard disconnection warning	warning
Reserved (44)	reserved	fault	A. $\mathrm{CoP}(145)$	parameter copy warning	warning
Reserved (45-49)	reserved	fault	A. CP1(146)	monitor comparison output 1 warning	warning
E. bru (50)	brake unit failure	fault	A. CP2(147)	monitor comparison output 2 \qquad	warning
Reserved (51)	reserved	fault	A. run2(148)	warning 2 in motion	warning
E. TExx (52)	self-learning output current over limit	fault	A. run3(149)	warning 3 in motion	warning
$\begin{aligned} & \text { reserved } \\ & (53 \sim 70) \end{aligned}$	reserved	fault	A. FA1(150)	external extension reserved 1	warning
E. iAE1(71)	motor angle learning fault 1	fault	A. FA2(151)	external extension reserved 2	warning
E. iAE2(72)	motor angle learning fault 2	fault	A. FA3(152)	external extension reserved 3	warning
E. iAE3(73)	motor angle learning fault 3	fault	A. FA4(153)	external extension reserved 4	warning
E. PST1(74)	synchronous motor step out fault 1	fault	A. FA5(154)	external extension reserved 5	warning
E. PST2(75)	synchronous motor step out fault 2	fault	A. FA6(155)	external extension reserved 6	warning
E. PST3(76)	synchronous motor step out fault 3	fault	A. FrA (157)	reserved	warning
E. dEF (77)	excessive speed deviation	fault	A. 161(161)	cooling fan service life warning	warning
E. SPd (78)	stall protection	fault	A. 163(163)	Main relay service life warning	warning
E. Ld1(79)	load protection 1	fault			

Table 4-68 Fault code

Chapter 5 Regular Inspection and Maintenance

5.1 Inspection

Inverters are composed of semiconductor devices, passive electronic devices and motion devices, and these devices have a service life. Even under normal working conditions, some of the devices may have characteristics change or failures if the service life is exceeded, thus preventive maintenance such as routine check, periodic check, and component replacement must be performed. It is recommended to check the machine every 3 to 4 months after installation.
Daily inspection: in order to avoid damage to inverters and shortened service life, please check the following items daily.

Item	Content	Method
Power supply.	Check whether the power supply voltage meets requirements and any phase loss.	Address by requirements of the nameplate.
Surroundings	Check whether the installation environment meets requirements.	Identify the source and address it properly.
Cooling system	Whether there is abnormal heating and discoloration of inverter and motor, and the working condition of cooling fan.	Check whether it is overloaded, the heat sink of the converter is dirty or not, whether the fan is blocked, tighten the screws.
Motor	Check whether the motor has abnormal vibration and abnormal sound.	Tighten mechanical and electrical connections and lubricate mechanical parts.
Load status	Check whether the inverter output current is higher than the motor or inverter rated values for a certain period of time.	Confirm whether overload occurs and whether the selection of inverter is correct.

Table 5-1 Daily inspection

- Regular inspection: Generally, it is appropriate to carry out regular inspection every 3 to 4 months, please determine the actual inspection period based on the use of each machine and working environment.

Item	Content	Method
Overall	- Insulation resistance \& environment check.	- Tighten and replace defective parts; Clean and improve the working environment.
Electrical connection	- Whether there is discoloration on wires and connected parts; whether there is discoloration, damage, cracking, aging traces on insulation layer; - Whether terminal are worn, damaged or loose; - Grounding check;	- Replace the damaged wire; - Tighten the loose terminals and replace damaged terminals; - Measure the grounding resistance and tighten the corresponding grounding terminals;
Mechanical connection	Whether there is any abnormal vibration and sound, and connected parts loose;	- Tighten, lubricate and replace defective parts.
Semiconduct or device	- Whether there is garbage and dust; - Whether there is a significant change in appearance;	- Clean and improve the working environment; - Replace the damaged parts;
Electrolytic capacitance	- Whether there is liquid leakage, discoloration, cracking, and exposure, expansion, rupture or leakage on safety valves;	- Replace the damaged parts;
Peripheral device	- Peripheral equipment appearance and insulation inspection;	- Clean and improve the working environment; - Replace the damaged parts;
Printed circuit board	- Whether there is abnormal odor, discoloration, serious rust, and connectors are correct and tight;	- Fasten connectors; - Clean the printed circuit board; - Replace the damaged printed circuit board;
Cooling system	- Whether cooling fan is damaged and blocked - Whether heat sink is stained with garbage and dust; - Whether the air inlet and exhaust outlet are blocked or stained with foreign matters;	- Clean and improve the working environment; - Replace the damaged parts;
Keyboard	- Whether keyboard is damaged and display complete or not;	- Replace the damaged parts;
Motor	- Whether the motor has abnormal vibration and abnormal sound.	Tighten the mechanical and electrical connection, and lubricate the motor shaft.

Table 5-2 Regular inspection
: Do not perform any operations when the power supply is on, otherwise there is a risk of death by electric shock. When performing operations, cut off the power supply and ensure that the DC voltage of the main loop has been decreased to a safe level and then wait 5 minutes.

5.2 Maintenance

All devices and components have service life. Proper maintenance can prolong the service life, but will not make up for the damage of devices and components. Please replace the components as required.

Part	Service life	Part	Service life	Part	Service life
Fan	$2 \sim 3$ year	Electrolytic capacitance	$4 \sim 5$ year	Printed circuit board	$8 \sim 10$ year

Table 5-3 Parts and service life

The replacement of other components requires high maintenance technology and product familiarity, and they must pass strict testing before being put into use. Therefore, please don't replace other internal components by yourself. If you do need a replacement, please contact the purchasing agent
or our sales department.

5.3 Product Guarantee

1. If the product fails within the warranty period, please refer to the clauses and scope in the warranty card.
2. Primary fault diagnosis is performed by customers in principle, but if required, we or our service network stations can provide according service. On the result of negotiation between us, if the fault is on the product or caused behavior of Veichi, it's free, otherwise it will be charged;
3. Exemption from liability: any inconvenience caused to our customers or secondary customers, any damage caused to non-Veichi products due to the failure of our products, whether within the warranty period or not, shall not be within the scope of our company's liability

Appendix I: Modbus Communication Protocol

- Communication frame structure

The communication data format is as follows:
Byte composition: includes the start bit, 8 data bits, check bit and stop bit.

start bit	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7	Bit8	check bit	stop bit

Table Appendix I-1 Communication frame structure
The information of a frame must be transmitted as a continuous data stream. If the interval of more than 1.5 bytes is longer before the end of the frame transmission, the receiving device will clear the incomplete information and mistakenly assume that the next byte is the address domain part of the new frame. Similarly, if the interval between the start of a new frame and the previous frame is less than 3.5 bytes, the receiving device will consider it as a continuation of the previous frame. Due to the misalignment of the frame, the CRC check value will eventually be incorrect, resulting in a communication error.

- Communication control parameter group address description

Function description	Address definition	Data description			R/W characteristics
Frequency from communication	0x3000 or 0x2000	$0 \sim 50000$ corresponding to $0.00 \mathrm{~Hz} \sim 500.00 \mathrm{~Hz}$			W/R
Communication command setting	0x3001or 0x2001	0000 H : null 0001H: forward running; 0002H: backward running; 0003H:forward jogging; 0004H: backward jogging;		0005 H : decelerate and stop; 0006H: free stop; 0007 H : fault reset 0008 H : Operation prohibited command 0009H: Operation allowed command	W/R
Inverter status	0x3002 or 0x2002	Bit0	0 : stopped	1: running	R
		Bit1	0 : non-accelerating state	1: accelerating	
		Bit2	0 : non-decelerating state	1: decelerating	
		Bit3	0 :forward	1: backward	
		Bit4	0: no faults	1: inverter failure	
		Bit5	0: GPRS unlocking	1: GPRS locked	
		Bit6	0 : no warning	1: inverter warning	
Inverter fault code	0x3003 or 0x2003	Current inverter fault code (see fault code table)			R
Upper limit frequency from communication	0x3004 or 0x2004	$0 \sim 32000$ corresponding to $0.00 \mathrm{~Hz} \sim 320.00 \mathrm{~Hz}$			W/R
Torque setting from communication	0x3005 or 0x2005	$0 \sim 1000$ corresponding to $0.0 \% \sim 100.0 \%$			W/R
Forward maximum frequency limited by torque	0x3006 or 0x2006	$0 \sim 1000$ corresponding to $0.0 \% \sim 100.0 \%$			W/R
Backward maximum frequency limited by torque	0x3007 or 0x2007	$0 \sim 1000$ corresponding to $0.0 \% \sim 100.0 \%$			W/R
PID value setting from communication	0x3008 or 0x2008	$0 \sim 1000$ corresponding to $0.0 \% \sim 100.0 \%$			W/R
PID feedback value setting from communication	0x3009 or 0x2009	$0 \sim 1000$ corresponding to $0.0 \% \sim 100.0 \%$			W/R
Failure and warning code reading	0x3010 or 0x2010	$0 \sim 63$ are fault codes and $64 \sim$ are warning codes			R
Output terminal status	0x3018 or 0x2018	External inverter output terminal, BII0--Y		$\begin{aligned} & \text { BIT1--TA1-TB1- } \\ & \text { TC1; } \\ & \text { BIT2--TA2-TB2- } \\ & \text { TC2 } \\ & \hline \end{aligned}$	W
AO output	0x3019 or 0x2019	$0 \sim 10000$ corresponding to output $0 \mathrm{~V} \sim 10 \mathrm{~V}, 0 \mathrm{~mA} \sim 20 \mathrm{~mA}$			W

Table Appendix I-2 Communication control parameter group address description
Note: For other function code addresses, see the "Communication Address" column in the function code table.
When the $\mathrm{F00}$ to F 15 parameter group parameters are written with write command $(06 \mathrm{H})$, if the highest bit in the address field of the function code parameter is 0 , the parameters are only written into the RAM of the inverter and are not stored after power failure. If the address field height of the function code parameter is 1 , the parameter is written into the EEPROM. For example, F00 group :0x00XX (write RAM)0x10XX(store in EEPROM).

When using the write command $(\mathbf{0 6 H})$ to write parameters of F 16 to F 29 , if the highest bit in the address field of the function code parameter is 5 , it is only written into the RAM of the inverter, and is not stored after power failure. If the address field height of the function code parameter is D, the parameter is written into the EEPROM, which is power-off storage. For example, F16 group :0x50XX(write RAM)0xD0XX(store in EEPROM); Group F17:0x51XX(write to RAM)0xD1XX(save to EEPROM).

- Error code meaning from the slave's response to the exception message

Error code	Description	Error code	Description	Error code	Description
1	Wrong command code	3	CRC check error	4	Illegal address
5	Illegal data	6	Unchangeable parameters in motion	8	Converter busy (EEPROM in storage)
9	Parameters out of range	10	Unchangeable saved parameters	11	The number of bytes in the parameter read incorrectly

Table Appendix I-3 Error code meaning

Appendix II：External Keyboard Size and Model

－External double－row display keyboard shape and hole size
Model：KBD300－25（Note：LCD is fully compatible with LED keyboard dimensions and hole sizes（unit：mm））．

AC01 series external two－row display keyboard shape and hole size
－External single－row keyboard shape and hole size
Model：KBD10－15（Note：hole size of mounting plate ：61mmx36mm．（Unit in the figure： mm ））

